Speaker
Description
The continuum field theoretic approach to describing a many-particle system has been very useful in understanding its thermodynamic and time-dependent behaviour. Our discussion will be on the fluctuating hydrodynamic description used to study the behaviour of a system of passive systems and the active matter of self-propelled particles. The dynamics are primarily formulated in terms of a set of collective modes of the system. Starting from a set of microscopic balance equations which are exact representations of the stochastic dynamics of a many particle system, the description with smooth Spatio-temporal dependencies follow.
We demonstrate how the appearance of the self-propelling terms and the breaking of Galilean invariances in the equations for the active-matter hydrodynamics are linked to the microscopic dynamics of the individual units.