When recording trajectories of biomolecules in crowded media, a question of fundamental interest is whether a tracked molecule interacts with other molecules or structures invisible to the observer. One also wants to know whether energy exchange occurs during such interactions since out-of-equilibrium interactions can be a sign of a specific biological function. Addressing these questions...

As the science and modern technologies are seizing the realm of nanoscale systems, characterization of composite materials with solid-fluid and fluid-fluid interfaces has become a problem of broad interdisciplinary interest. Properties of such complex systems, which vary in space over microscopic scales, shape important processes in engineering and biology. Estimation of the...

The noise driven motion in a bistable potential acts as the archetypal model of various physical phenomena. In the weak noise limit, for the overdamped particle driven by a non-equilibrium, $\alpha$-stable noise the ratio of forward and backward transition rates depends only on the width of the potential barrier separating both minima. The poster presents analytical and numerical results...

Random sequential adsorption of various shapes built of disks is studied to determine the shape, which follows to densest random packing. Using the evolutionary algorithm to sample the space of shapes, we found that independently of the number of used disks, the optimal shape tends to a triangle with rounded corners. Thus, we run the same algorithm to study packings built of rounded...

The photoluminescence degradation of the thermally evaporated Alq3 thin films can be described by a four components model based on the Kohlrausch-Williams-Watt (KWW) function. This model improved the agreement between experimental data and the theoretical fit with respect to the four components model based on “pure” exponential functions. In fact, the negative bump in PL intensity decay...

We report a new class of Smoluchowski-like equations for ballistically aggregating particles in a space-uniform system. They naturally emerge when the derivation of the aggregation equations is performed starting from the Boltzmann kinetic equation for the mass-velocity distribution functions [1]. Then the system of equations for the zero-order moments of the distribution functions – the...

We investigate the nonequilibrium energetics near a critical point of a non-linear driven oscillator immersed in an active bacterial bath. At the critical point, we reveal a scaling exponent of the average power $\langle\dot{W}\rangle\sim (D_{\rm a}/\tau)^{1/4}$ where $D_{\rm a}$ is the effective diffusivity and $\tau$ the correlation time of the bacterial bath described by Gaussian colored...

Electronic relaxation in solution is an interesting phenomenon from experimental as well as theoretical point of view. This diffusion controlled process has been theoretically modeled by using Smoluchowski equation with a position dependent sink term. The problem has been solved for different potentials and sink functions. Single state problem where Smoluchowski equation for harmonic potential...

Efficiency of search for randomly distributed targets is a prominent problem in many branches

of the sciences. For the stochastic process of Lévy walks, a specific range of optimal efficiencies

was suggested under variation of search intrinsic and extrinsic environmental parameters. We study fractional Brownian motion as a search process, which under parameter variation

generates all three...

Based on studies where a linear piezoelectric energy harvester is subjected to external random mechanical excitations modeled through Gaussian noises (white and colored), it was decided to propose a more general colored noise of the Levy α−stable type. Analytical, exact and approximate results and numerical results are presented on the characteristics of such excitations and the electrical...

Some pacemaker neurons show a depression of their mean firing rate for intermediate noise amplitudes, which reminds the response enhancement known as “stochastic resonance” (SR). Even though its analogy with SR goes no further, this phenomenon has been termed “inverse stochastic resonance” (ISR). In a recent work, the ISR phenomenon -as well as its close relative “nonstandard SR” (or more...

Recent empirical studies provide evidence that so-called social hysteresis [1] is present in animal [1, 2, 3] as well as in human societies [4, 5, 6], which would suggest that (at least some) phase transitions observed in real social systems are discontinuous. It occurs that discontinuous phase transitions are not that typical in models of opinion dynamics. Within several versions of the...

In this talk, we provide a numerical study of the recently developed generalised temperature-dependent Smoluchowski equations. To solve the new complex system, we adapt and improve the low-rank approach of solving large ODE systems. This allows us to quickly find approximate solutions for generalised systems of Smoluchowski equations even when the collision kernels change during aggregation....

We study a system where a particle scatter on the periodic Dirac delta potential. The problem is canonical i.e. it is considered during typical quantum mechanics course. There are several approaches to solve the Schrodinger equation for such a systems [1] [2]. However most of solutions rely on different matrix method. We would like to introduce new, combinatorial method by writing system of...

Cyclic, one-dimensional Kuramoto models with various types of interactions are reviewed. Ruch models are less resilient to Byzantine perturbations than a classic solution would suggest.

The combination of polymer and inorganic substance in hybrid membrane results in favourable selectivity and permeability, and consequently such membrane becomes a promising alternative to conventional membrane materials. The resulting membranes show improved chemical, mechanical, and thermal stability and hydrophilic–hydrophobic balance. The objective of this research is to determine whether...

Processes involving Brownian motion of small reactants toward much larger static particles (sinks) and subsequent trapping of these reactants by the sinks are very commonly encountered in both nature and in artificial media. Theoretically these processes are described by so-called trapping model of the irreversible bulk diffusion-controlled reactions. To avoid difficulties of classical...

We present a model of atomic force microscope indentation measurements using the finite element method. The focus is set on a thorough representation of the complex structure of an animal cell. Crucial constituent is the cell cortex — a stiff layer of cytoplasmic proteins present on the inner side of the cell membrane. It plays a vital role in the mechanical interactions between cells. In our...

In this work, we study a kinetic model of aggregation process with collisional fragmentation with use of two efficient implementations of numerical methods: direct simulation Monte Carlo and finite-difference scheme exploiting the low-rank matrix representations of the utilized kinetic coefficients. We concentrate our efforts on the analysis of the solutions for a particular class of non-local...

We address the question of energy transport in out-of-equilibrium systems. The experiment consists in two coupled granular gas Non-Equilibrium Steady State (NESS) heat baths, in which $2$ cm-scale rotors are imbedded. These Brownian-like mobiles are electro-mechanically coupled with a resistor R, allowing energy to flow between them. The mean flux is non-zero if the temperatures of the baths...

Schizophrenia is the most common form of psychotic behaviour where patients experiences hallucination, dillusion or chaotic speech. Schizophrenia is difficult to detect and easily go undetected for years. Here we propose the idea of detecting schizophrenia by a network of interacting chemical oscillators. We optimized a classifier based on six interacting oscillator using genetic algorithm and...

The endometrium is the tissue lining the uterus cavity. The most important role of this tissue is enabling the embryo to implant and providing it with good conditions for growth and development.

According to many literature reports, cell and tissue mechanical properties have a significant role in many disease states. Changes in cell properties such as elasticity are observed in the case of...

Studying the dynamics of a system at the atomic level provides important information about the behaviour of the system. For example, studying the dynamics of enzymes allows us to understand their biological function. Among the available techniques, studying the dynamics of a system by means of neutron scattering is of exceptional meaning, as neutrons scatter at the nuclei themselves.

Van...

The ‘Arcsine’ laws of Brownian particles in one dimension describe

distributions of three quantities: the time $t_m$ to reach maximum position, the

time $t_r$ spent on the positive side and the time $t_l$ of the last visit to the

origin. Interestingly, the cumulative distribution of all three quantities are the

same and given by Arcsine function. In this paper, we study distribution of

these...

The growing popularity of bibliometric indexes goes hand in hand with their critique by those who claim that scientist’s impact cannot be reduced to a single number. Some even believe that such a complex reality fails to submit to any quantitative description. We argue that neither of the two controversial extremes is true. With our new agent-based model (doi.org/10.1073/pnas.2001064117) we...

A concept of a biopolimer network immersed within an aqueous solution as addressed in terms of flexibility vs. mechanical stability criterion has been proposed. It is based on a transmission of correlated wave of (hydrogen) ions emerging from breaking in a massive way the hydrogen bonds between the biopolymers, such as hyaluronan, and their non-ideal aqueous solution’s surroundings.

Based on...

Adsorption on smooth and atomistically flat surface is well understood, while still very few works concern adsorption on rough and heterogeneous surfaces. In this study, we investigate the properties of packings of balls obtained via random sequential adsorption (RSA) on a sinusoidal substrate. Our main goal is to observe surface inhomogeneities on a scale smaller than particles' size. We...