3-4 December 2020
Europe/Warsaw timezone

Finite element modelling of atomic force indentation of an animal cell

3 Dec 2020, 18:18
1m

Speaker

Leszek Krzemien (Instytut Katalizy i Fizykochemii Powierzchni im. Jerzego Habera Polskiej Akademii Nauk)

Description

We present a model of atomic force microscope indentation measurements using the finite element method. The focus is set on a thorough representation of the complex structure of an animal cell. Crucial constituent is the cell cortex — a stiff layer of cytoplasmic proteins present on the inner side of the cell membrane. It plays a vital role in the mechanical interactions between cells. In our model, the cell cortex is modelled by a three-dimensional solid characterized primarily by its bending stiffness. This approach allows us to interpret the measurements of the mechanical properties of the cells, such as elasticity. During the simulations, we probe a broad range of parameters defining cell properties and experimental conditions. Finally, we derive a simple and closed-form formula that approximates the simulated results with satisfactory accuracy. Our formula is as easy to use as Hertz's function in order to extract cell properties from the measurement, with additional consideration of the cell inner structure.

Primary authors

Leszek Krzemien (Instytut Katalizy i Fizykochemii Powierzchni im. Jerzego Habera Polskiej Akademii Nauk) Ms. Magdalena Giergiel (Zakład Fizyki Nanostruktur i Nanotechnologii, Instytut Fizyki UJ ) Agnieszka Kurek (Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences) Jakub Barbasz (Instytut Katalizy i Fizyochemii Powierzchni im. Jerzego Habera PAN)

Presentation Materials

There are no materials yet.
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×