We discuss a general situation of a response of a random process under stochastic resetting to an external force. The displacement process is considered to be a Markov one, and it starts anew at resetting events which follow a renewal process (complete resetting). When assuming that the displacement process shows linear response to a weak external force, we ask what kind of the response does...
Recent progress in fabrication methods draws attention to lattice materials. Thanks to their structure lattice materials frequently offer superior performance compared to bulk materials. However, most of them suffer from shear bands. These strain localizations, diagonal to the load direction, are the main mode of failure for lattice materials. Sear bands are due to a very organized periodic...
In developmental systems cells determine their fate by decoding chemical signals, called morphogens. This results in the emergence of gene expression patterns. I will address the problem of gene expression patterns stability in the systems where two interacting and diffusible gene expression products control the size of their own source regions. Such systems are encountered in e.g. spinal cord...
Double-strand breaks (DSBs) of DNA are the most dangerous type of DNA lesions. Unrepaired DSBs may lead to cell death or cancer driving mutations. A deep understanding of the nature of DSBs, DSBs-related structural modifications of DNA, and repair process of DNA damage is critical to the maintenance of genomic integrity in all forms of life. In this presentation, a statistic-based approach for...
Neurons in the brain are wired into adaptive networks that exhibit a range of collective dynamics. Oscillations, for example, are paradigmatic synchronous patterns of neural activity with a defined temporal scale. Neuronal avalanches, in contrast, are scale-free cascades of neural activity, often considered as evidence of brain tuning to criticality. While models have been developed to account...