The advent of novel opto-genetics technology allows the recording of brain activity with a resolution never seen before. The characterisation of these very large data sets offers new challenges as well as unique theory-testing opportunities. Here we discuss whether the spatial and temporal correlation of the collective activity of thousands of neurons are tangled as predicted by the theory...
The KPZ equation[1] is connected to a large number of processes, such as atomic deposition, evolution of bacterial colonies, the direct polymer model, the weakly asymmetric simple exclusion process, the totally asymmetric exclusion process, direct d-mer diffusion, fire propagation, turbulent liquid-crystal, spin dynamics, polymer deposition in semiconductors, and etching [2]. We present a...
We address the two-fold applicability of the power spectrum density of the large-conductance voltage- and Ca2+ -activated potassium channels of the inner mitochondrial membrane (mitoBK). First, we will address the estimation of the optimal sampling frequency for the fibroblast's mitoBK patch-clamp data analysis [1], employing the process with doubly harmonic diminution, known to produce pink...
The cerebral cortex exhibits spontaneous activity even in the absence of any task or external stimuli. A salient aspect of this resting-state dynamics, as revealed by in vivo and in vitro measurements, is that it exhibits several patterns, including collective oscillations, emerging out of neural synchronization, as well as highly-heterogeneous outbursts of activity interspersed by periods of...
We show through intensive simulations that the paradigmatic features of anomalous diffusion are indeed the features of a (continuous-time) random walk driven by two different Markovian hopping-trap mechanisms. If p ∈ (0, 1/2) and 1 − p are the probabilities of occurrence of each Markovian mechanism, then the anomalousness parameter β ∈ (0, 1) results to be β ≃ 1 − 1/{1 + log[(1 − p)/p]}....