A feedback loop between the network topology and dynamical processes that occur between nodes is common in real-world networks. The topology impacts the evolution of node states, which in turn influence the way the structure itself is modified. This feedback is a signature of networks that are called adaptive or coevolutionary. Adaptive networks are especially relevant for social systems,...

The $q$-voter model with both attractive (roughly speaking, ferromagnetic-like) and repulsive (antiferromagnetic-like) interactions on random graphs is investigated. In this model the agent, represented by a two-state spin located in a node of a graph, with probability $1-p$ changes his/her opinion under the influence of a clique of $q$ randomly chosen neighbors and with probability $p$ acts...

Echo chambers and opinion polarization recently quantified in several sociopolitical contexts and across different social media raise concerns on their potential impact on the spread of misinformation and on the openness of debates. Despite increasing efforts, the dynamics leading to the emergence of these phenomena remain unclear. We propose a model that introduces the dynamics of...

Measurements of durations of nonequilibrium stochastic processes provide valuable information on underlying microscopic kinetics and energetics. Theories for corresponding experiments to date are well-developed for single-particle systems only. Little is known for interacting systems in nonequilibrium environments. We introduce and discuss a basic model for cycle processes interacting with an...

We introduce a continuous time-reversal operation which connects the time-forward and time-reversed trajectories in the steady state of an irreversible Markovian dynamics via a continuous family of stochastic dynamics. This continuous time-reversal allows us to derive a tighter version of the thermodynamic uncertainty relation (TUR) involving observables evaluated in different physical...

Ergotropy is a state function of a density matrix which physical interpretation is the optimal work that can be extracted through the arbitrary unitary channel. The concept naturally appears in frameworks with implicit work reservoirs (e.g. external fields modeled by time-dependent Hamiltonians), where, in particular, the process of charging and discharging of so-called quantum batteries is...