Exact solution for a $1+1$ etching model.

6 Sep 2017, 11:30
oral Session 9


Fernando Oliveira (Universidade de Brasília)


We present a method to derive analytically the growths exponents of a eroded surface whose dynamics is ruled by cellular automata. Starting from the automata, we write down the time evolution for the height's average and height's variance (roughness). We apply the method to the etching model[1,2] of $1+1$ dimensions, than we obtain the dynamical exponents, which perfectly match the numerical results obtained from simulations. Those exponents are exact and they are the same as those exhibited by the KPZ model[3] for this dimension. Therefore, it shows that the etching model and KPZ belong to the same universality class[4]. Moreover, we proof that in the continuous limit the majors terms leads to KPZ [5]. $ $ [1] B. A. Mello, A. S. Chaves, and F. A. Oliveira, Phys. Rev. E 63, 041113 (2001). [2] E. A. Rodrigues, B. A. Mello, and F. A. Oliveira, J. Phys. A 48, 035001 (2015). [3] M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett. 56, 9, 889 (1986). [4] W. S. Alves, E. A. Rodrigues, H. A. Fernandes, B. A. Mello, F. A. Oliveira and I. V. L. Costa, Phys. Rev. E 94, 042119 (2016). [5] W. P. Gomes and F. A. Oliveira, to be published.

Primary author

Fernando Oliveira (Universidade de Brasília)


Evandro Rodrigues (Universidade de Brasília) Ismael Costa (Universidade de Brasília) Waldenor Gomes (Universidade de Brasília) Washington Alves (Universidade de Brasília)

Presentation Materials

There are no materials yet.
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now