The study of hyperuniform states of matter is an emerging multidisciplinary field, influencing and linking developments across the physical sciences, mathematics and biology [1,2]. A hyperuniform many-particle system in $d$-dimensional Euclidean space is characterized by an anomalous suppression of large-scale density fluctuations relative to those in typical disordered systems, such as...
Liquid crystals are a state of matter with the properties of both liquids and solids. They have a long research history dating back to the 19th century and have found countless applications, with LCDs being arguably the most important one of them. As demonstrated by Onsager, the phase transition between isotropic liquid and nematic liquid crystal can be induced by excluded volume effects...
Percolation on non-planar lattices, such as lattices with crossing bonds, are generally expected to be in the two-dimensional universality class of ordinary percolation, and indeed that is the case for the leading behavior. However, we have found that the corrections to scaling, as characterized by the exponent Omega, are different for the non-planar system. This might imply that the usual...
Random sequential adsorption (RSA) of various polydisks and rounded polygons is studied to determine the shape, which forms the densest packings. Covariance matrix adaptation evolution strategy (CMA-ES), an evolutionary optimization algorithm is used to search for optimal shapes. We found that independently of the number of component disks, the optimal polydisk resembles a triangle with...
Random Sequential Adsorption is a very simple protocol that generates random loose packings. It takes a virtual particle, randomly chooses its position and orientation, and then checks if it does not overlap with any object already placed in the packing. If so, the virtual particle is added, otherwise it is removed.
Typically, the shape that is to be deposited is always the same. In this...
Silver and nickel composites are peculiar for many reasons. As pure, both of these metals exhibit fcc crystal structures, but their lattice constants are much different. Because in the solid state they are almost insoluble, in the case of flat surfaces it may result in occurring of superlattice arrangement resulting from the mistmatch of lattice constants, with silver atoms well separated...
The granular gas is a paradigm for understanding the effects of inelastic interactions in granular materials. Through this work, we obtain analytical results for a microscopic model for a granular gas where particles with two-dimensional velocities are driven homogeneously and isotropically by reducing the velocities by a factor and adding a stochastic noise. We find two universal regimes. For...