Speaker
Description
Active Brownian motion with intermittent direction reversals are common in a class of bacteria including M. xanthus and P. putida. We show that, for such a motion in two dimensions, the presence of the two time scales set by the rotational diffusion constant $D_R$ and the reversal rate $\gamma$ gives rise to four distinct dynamical regimes: (I) $t\ll \min (\gamma^{-1}, D_R^{-1}),$ (II) $\gamma^{-1}\ll t\ll D_R^{-1}$, (III) $D_R^{-1} \ll t \ll \gamma^{-1}$, and (IV) $t\gg \max (\gamma^{-1}$, $D_R^{-1})$, showing distinct behaviors. We characterize these behaviors by analytically computing the position distribution and persistence exponents. The position distribution shows a crossover from a strongly non-diffusive and anisotropic behavior at short-times to a diffusive isotropic behavior via an intermediate regime (II) or (III). In regime (II), we show that, the position distribution along the direction orthogonal to the initial orientation is a function of the scaled variable $z\propto x_{\perp}/t$ with a non-trivial scaling function, $f(z)=(2\pi^3)^{-1/2}\Gamma(1/4+iz)\Gamma(1/4-iz)$. Furthermore, by computing the exact first-passage time distribution, we show that a novel persistence exponent $\alpha=1$ emerges due to the direction reversal in this regime.