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OUTLINE

© INTRODUCTION

9 FROM SUPERSTATISTICS TO DIFFUSING DIFFUSIVITY
o Generalised grey Brownian motion
@ Superstatistics
o Diffusing diffusivity models

© FIRST PASSAGE STATISTICS
@ First passage problem: definitions and BM results
@ Semi-infinite interval
@ Finite interval
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BROWNIAN YET NON-GAUSSIAN DIFFUSION
BROWNIAN YET NON-GAUSSIAN DIFFUSION (BNG)
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INTRODUCTION BROWNIAN YET NON-GAUSSIAN DIFFUSION

How CcAN THE BROWNIAN SCALING OF THE MSD BE RECONCILED
WITH NON-GAUSSIAN PDF?

0 92
aP(x t) = gl (D P(x,t)) +
Brownian motion Heterogeneity
Heterogeneity of N Both « Heterog.eneity in the
tracers environment

o ggBM-like models;
@ superstatistics;

o diffusing diffusivity.
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FROM SUPERSTATISTICS TO DIFFUSING DIFFUSIVITY GENERALISED GREY BROWNIAN MOTION

GENERALISED GREY BROWNIAN MOTION (GGBM)

It is possible to define ggBM model through the stochastic representation

Xegint = VA Xg )

where A is an independent non-negative random variable and X; is a Gaus-
sian process.

The PDF of the stochastic variable X,y can be evaluated by means of
the integral

X

& dA
ngBM(X, t) = /0 PXg (W) P/\()\) W J

where Px_ and Pp are the distributions of X and A respectively.

3Mura A & Pagnini G 2008, J. Phys. A: Math. Theor., 41 285003
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FROM SUPERSTATISTICS TO DIFFUSING DIFFUSIVITY GENERALISED GREY BROWNIAN MOTION

(GENERALISED GREY BROWNIAN MOTION

e If X, is fractional Brownian motion and A is distributed according to
a Mainardi-Wright function = stochastic process used to model
both slow and fast diffusion;

@ if Xz is Brownian motion and A is an independent non-negative
random variable = stochastic process that models BnG diffusion.

{

Ensemble of Brownian particles with random diffusivities from the
distribution pp(D)

Xggnm(t) = V2D W(t),

(x/v2D)? dD
P <_2t> PD(D)\/E

(o)
PegpM(X, t) = /
0

2wt
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FROM SUPERSTATISTICS TO DIFFUSING DIFFUSIVITY SUPERSTATISTICS

SUPERSTATISTICAL BROWNIAN MOTION
" Statistics of a statistics” — based on two statistical levels describing:
@ the fast jiggly dynamics of the Brownian particle;

@ the slow environmental fluctuations with spatially local patches of
given diffusivity.
Ps(x.t) = [ po(D)P(xt[D)dD

!
Ps(X, t) = 'DggBM(X7 t)

4Beck C & Cohen E D B 2003, Physica A, 322 267 — 275
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FROM SUPERSTATISTICS TO DIFFUSING DIFFUSIVITY SUPERSTATISTICS

GGBM-LIKE MODELS & SUPERSTATISTICAL MODELS

Describe heterogeneity of the tracers and/or heterogeneity in the
medium;

At the single-trajectory level — standard Brownian motion;

@ At the ensemble level — BnG diffusion;

They are described through the same stochastic representation:

X =v2D x Xg,
(where D is random and X, is Brownian motion)

Not able to explain transition to Gaussian diffusion!

1
Diffunsing Diffusivity
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DIFFUSING DIFFUSIVITY MODELS

FROM SUPERSTATISTICS TO DIFFUSING DIFFUSIVITY

MINIMAL DIFFUSING DIFFUSIVITY MODEL (MDD)

aX(t) = Wﬁl(ﬂ (subordination) {jth(T) = V2&4(7)
9Y() = —Y(t)+ &) = art) = P

where the n-dimensional OU process starts from its equilibrium distribution,

such that pp(D) = ?(2;;)1 exp (—D).

-]
—~~
~
N

|

Ppp(x, t|xg) = / G(x,7T|x0, D = 1) Tp(r, t)dT,
0

where T,(7,t) is the PDF of the process 7(t) = fot Y2(t')dt', defined via
its Laplace transform

= _ exp(nt/2)
Ta(s, t) = R
[J(VT+22 + ) sinh (VT +252) + cosh (114252 )|

.
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FROM SUPERSTATISTICS TO DIFFUSING DIFFUSIVITY DIFFUSING DIFFUSIVITY MODELS

A MORE GENERAL MINIMAL DIFFUSING DIFFUSIVITY MODEL

v+n
pteorr =y )

)

n
Yon (D) = W

where D, , v and 7 are positive constants.
If n=1and 2v € N = Gamma distribution.
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FROM SUPERST!

@ linear dispersion of the mean-squared
displacement with time (X3(t)) =
2<D>st t;

@ full consistency in the short time limit
with the superstatistical approach, de-
scribing non-gaussian diffusion;

@ explicit derivation of the crossover to
Gaussian diffusion at long times.

fonl)

Fon(x)

n=1.3,v=15
FIT~1.0341t
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FIRST PASSAGE STATISTICS

How DOES HETEROGENEITY AFFECT THE FIRST PASSAGE
PROPERTIES OF THE DIFFUSION PROCESS?

4

We would expect that, rare events,
represented by the exponential tails of
the particles displacement distribution,

may dominate triggered actions.
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FIRST PASSAGE STATISTICS

FIRST PASSAGE PROBLEM FOR BM

FIRST PASSAGE PROBLEM: DEFINITIONS AND BM RESULTS

%PBM(X, t|X0) = D%PBM(X, t|XQ),
PBM(X,O|X0) = (5(X — Xo),
PBM(O, t|X0) = PBM(L, t|X0) =0.
Survival probability:  S(t|x0) = foL P(x, t|xo)dx
First passage time density function:  p(t|xo) = —%S(t|xo)
— L finite
[eS) P2
o Su(tlo) = £ 3 sin (T2ptx) ool D) ), = nm/L.
n=0
° pBM(t|X0) ~ exp(—t/ﬁ), T = L2/7T2D - <tBM> < Q. )
- L=
° SBM(t‘XO) =erf (\/zoﬁ) .
° pBM(t|X0) = \/ﬁ exp (— \Z%) - <tBM> = 0.
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FIRST PASSAGE STATISTICS SEMI-INFINITE INTERVAL

FIRST PASSAGE PROBLEM FOR MDD: SEMI-INFINITE INTERVAL
9]
SDD(t|X0) = / T(T, t)SBM(T|X0)dT
0
[e'e} “+oo dk . . . -
— / dX/ 7eflkx (eIkX(] _ eiIkXO)T(k2, t),
0 —00 27

where

T(K?, t) = et/? L1+ 2k?2+ —~ ) sinh (tv/1 + 2k2) + cosh (tv/1 + 2k2
2 V/1+2k2

1/2
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t t
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FINITE INTERVAL

FIRST PASSAGE PROBLEM FOR MDD: FINITE INTERVAL

> 4 & (2 T(\
Z- m(2n+1) (A2nt1, 1)
SDD(l'|X0) = / T(T, t)SBM(TlXo)dT = — sin X0
0 ™ L (2n+1)
n=0
10* N
. LETTHAN
10° -
107!
=, .|+ - DDsi “a, s
S 5:2 !
102 L[+ 4+ supSim “ 4 — BM
— BM Theor W \ — DD
104 == sup Theor ~etlT 9 {1 — SUPERST
161 16" 15“ 16‘ 10

NB: ps(t|xg) ~ t71° = (ts) = 0

Superstatistical model shows an
infinite mean first passage time
even in a finite interval!

Caused by the non 0 value
of pp(D) at the origin which
introduces immobile particles.
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SUMMARY

SUMMARY 1

o ggBM-like models and superstatistical models describe heterogenous
ensemble of particles or diffusion in heterogenous medium where:

v~ BnG diffusion is observed;
v~ there is no crossover to gaussian diffusion.

@ DD models describe systems with slowly varying and heterogenous fluc-
tuations of the environment where:

v~ the validity of the superstatistical assumption in the short time regime
allows for a description of BnG diffusion;

v~ in the long time regime the sampling of the entire diffusivity space
leads to gaussian diffusion with an effective value for the diffusivity;

v the underlying stochastic process describing the diffusivity fluctuations
is responsible for the shape of the non-gaussian displacement
distribution in the short time regime.
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SUMMARY

SUMMARY 11

@ In general heterogeneities in the environment do not improve the mean
first passage result, in fact some of the particles are slowed down;

@ thanks to the heterogeneity some particles have a diffusion coefficient
greater than the average, thus an increase in the speed of target loca-
tion for these particles is observed;

@ the amount of fast particles is independent on the initial position and
they are responsible for the faster decrease of the survival probability
at short times;

@ at long times the results for the DD model approach the BM ones, as
expected;

@ the superstatistical model results deviates drastically from the BM ones
showing a slower decay of the survival probability in the long times.
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SUMMARY

THANK YOU FOR YOUR ATTENTION!

For more details:

Beck C & Cohen E D B 2003, Physica A, 322 267 — 275

Mura A & Pagnini G 2008, J. Phys. A: Math. Theor., 41 285003
Chechkin A V, Seno F, Metzler R & Sokolov | 2017, PRX 7, 021002

VS, Chechkin A V, Seno F, Pagnini G & Metzler R 2018, New. J. Phys. 20,

043044

VS, Chechkin A V & Metzler R 2019, J. Phys. A: Math. Theor. 52, 04LT01

VITTORIA SPOSINI

SEPTEMBER 19TH, 2019

18 / 23



SUMMARY

FIRST PASSAGE PROBLEM FOR MDD: SEMI-INFINITE INTERVAL
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SUMMARY

FIRST PASSAGE PROBLEM FOR MDD: SEMI-INFINITE INTERVAL
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Spp(t[xo) = erf <4<D>btt> = Spm(t[xo)
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SUMMARY

FIRST PASSAGE PROBLEM FOR MDD: FINITE INTERVAL
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SUMMARY

GENERALISATION TO 2D AND 3D

Subordination: Ppp(r, tlry) = [;°

o G(r,7|ro, D =1)Ty(r,t)dT,

7 exp(d t/2)
Td(sa t) = 7
[/I729 + S )sinh (611 297) + cosh (tvI 7 257)]

Superstatistics: Ps(r, t|ro) = [, G(r, t|ro, D)pp(D)dD,

(D) {e_D =2
PD = 2vD .—D _
ﬁe d=3.

v

SDD(t'|I’0) = fooo SBM(t|I’0)Td(T, t)dT; Ss(t|r0) = fooo SBM(t|I’o)pD(D)dD

@ Spnm(t|ro) in a semi-infinite 2 and 3 dimensional space;

@ Spnm(t|ro) for isotropic diffusion in concentric circles and spheres.
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SUMMARY

COMPARISON OF DIFFERENT DD MODELS
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Figure 3. Comparison of the DD model based on the Ornstein—Uhlenbeck (OU) process
with the generalised DD model from [24] based on the generalised Gamma distribution.
Left: depending on the parameters v and 7 the distribution p(D) may be significantly
different. Right: survival probability for the different models, demonstrating that for
certain parameter values the first passage behaviour remains faster while for others the

performance is getting close to that of Brownian—Gaussian motion. Note that the results
for the two cases with » = 0.5 almost coincide.
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