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Introduction
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Discrete-time quantum walks

We define a unitary dynamics given by an operator U on the lattice
Hilbert space `2(Z) in discrete time such as the (wave function) ψ
satisfies

|ψ(t + 1)〉 = U|ψ(t)〉

For ψn(t + 1) to be a linear combination of ψn−1(t), ψn(t) and ψn+1(t),
the operator U is taken to be of the form

U = α1 + βs + γs†

where s and s† are the right and left-shift operators on Z.
Unitarity, UU† = U†U = 1, leads to
αα∗ + ββ∗ + γγ∗ = 1, α∗γ + β∗α = 0 and βγ∗ = 0
Solutions with α, β, γ ∈ C are trivial.
These coefficients must be taken in a non-commutative matrix algebra in
order to obtain a non-trivial solution to the problem (cf Dirac’s equation):

A discrete-time random walk requires an internal degree of freedom (a
coin, a spin) in addition to the space position.
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The Hadamard walk

The position Hilbert space is Hp ' `2(Z)

The internal degree of freedom, denoted by C , belongs to the Hilbert
space HC = Span (|+ 1〉, | − 1〉) ' C2.

The Unitary operator U acting on HC ⊗Hp is defined as

U = Ŝ(Ĥ ⊗ 1p)

where

Ĥ =
1√
2

(
1 1
1 −1

)
is the Hadamard matrix and Ŝ is the conditional shift operator given by

Ŝ =
∑

σ=±1,n∈Z
|σ, n + σ〉〈σ, n|

The evolution depends on the initial condition ψ(0).
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The even Hadamard walk Probability distribution

The probability distribution of the position observable Xt after 100
time-steps, with symmetric initial condition
|ψ(t = 0)〉 = 1√

2
(|+ 1〉C + i | − 1〉C )⊗ |0〉p, is given by

A weak-convergence result holds for t →∞ (Grimmett et al. 2004):

Xt

t
⇒ v

where the random variable v ∈ [− 1√
2
, 1√

2
] is distributed with density

f (v) =
1

π(1− v 2)
√

1− 2v 2
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Continuous-time Quantum Walks

In continuous time, a quantum walk on a line is simply described by a
Schrödinger equation (on the lattice):

i
dψn(t)

dt
= ψn+1(t) + ψn−1(t) with ψn(0) = δna

Assuming the particle is launched from a = 0, we have

ψn(t) =

∫
dq

2π
einq−2it cos q = i−nJn(2t) (Bessel)
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Ballistic Spreading

The typical scale of the continuous time Q. W. grows linearly with time〈
n2
〉

= 2t2,
〈
n4
〉

= 6t4 + 2t2

The maximal spreading velocity, V = 2, separates an allowed region from
a (exponentially) forbidden region:
• Allowed region (|n| < 2t)

|ψn(t)|2 → 1

π
√

4t2 − n2

• Ballistic peaks (n ≈≈ ±2t)

For |n| = 2t + z t1/3, ψn(t) ≈ i−nt−1/3Ai(z)
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Profiles Classical versus Quantum
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Note that ballistic spreading is merely a consequence of Heisenberg
Uncertainty Principle.
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Quantum Walks and Quantum Computing

Quantum Walks can be viewed as quantum-mechanical generalizations of
classical random walks, first introduced in

Y. Aharonov, L. Davidovich and N. Zagury, 1993, Quantum random
Walks, Phys. Rev. A 48 1687-1690.

• Toy-models of elementary quantum dynamics with entanglement,
many-body effects etc... S. E. Venegas-Andraca, 2012, Quant. Inf. Proc.
11 1015-1106

• Quantum Algorithms can be reformulated in terms of Quantum Walks:
A.M. Childs and J. Goldstone, 2004, Spatial Search by quantum walks,
PRA 70 022314.

• Universal models of quantum computation: A.M. Childs, 2009,
Universal Computation by quantum walk, PRL 102, 180501.

A good framework to study the interplay between statistical and
quantum effects.
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Survival of a Quantum Walk
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Survival of a 1d Walk in presence of a single trap

0 a

The classical case (Reminder): Put a classical trap of strength γ at site 0
and launch a (classical) random-walk from a :

dPn

dt
= Pn+1 + Pn−1 − 2Pn − γδn,0P0(t)

When t →∞, the survival probability S(t) =
∑

n∈Z Pn(t) decays to 0
and we have

S(t) ' b√
πt

with b = a +
2

γ

What can one say for a quantum walk?

K. Mallick Continuous-time Quantum Walks



Effective non-unitary evolution

The trap is modeled as optical potential (Wigner) of strength γ:

i
dψn(t)

dt
= ψn+1(t) + ψn−1(t)− iγ δn0 ψn(t)

with ψn(0) = δna. The survival probability is then given by

S(t) =
∑
n

|ψn(t)|2 = 1− 2γ

∫ t

0

|ψ0(τ)|2 dτ

In the limit t →∞, the quantum particle has an asymptotic probability
of not being trapped given by

S∞ = 1− 2γ

∫ ∞
0

|ψ0(τ)|2 dτ > 0

The dynamics can be solved exactly using Green functions techniques.
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Expression of the Survival Probability

Taking Fourier transform in space and Laplace in time, we obtain

ψ̂(q, s) =
i(e−iqa − γ ψ̂0(s))

is − 2 cos q
and ψ̂0(s) =

1

γ +
√

s2 + 4

(√
s2 + 4− s

2i

)a

This leads to an exact formula for the survival probability as a function of
the initial position a:

S∞ = 1− 4γ

π

[∫ π/2

0

sin θ dθ

(γ + 2 sin θ)2
+

∫ ∞
0

sinh θ dθ

γ2 + 4 sinh2 θ
e−2aθ

]
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The Zeno Effect
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• Monotonic behavior for a = 0 : S∞ ' 1
2γ2 for large γ.

• Non-monotonic for a 6= 0 : paradoxical transparency for γ →∞.
This is an instance of the Quantum Zeno Effect: repeated measurements
of a quantum system tend to freeze its dynamics (Degasperis, Fonda,
Ghirardi 1974; Misra, Sudarshan 1977; Turing 1954).

S∞ ≈ 1− 16a2

(4a2 − 1)πγ

See recent works of E. Barkai et al and A. Dhar et al.
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Quantum Walk with a finite random concentration
of traps

Traps are randomly and independently located on Z with a concentration
c . How does the survival probability S(t) of the quantum walker decay
with time?

i
dψn(t)

dt
= ψn+1(t) + ψn−1(t)− iγ εn ψn(t)

εn =

{
1 trap with Prob. c

0 no trap with Prob. 1− c .

Parris, Edwards & Parris (1989); KLM (2014)
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Classical Particle: Lifshitz and Donsker-Varadhan
estimate

For a classical walker, the asymptotic behaviour of the survival is found
thanks to a Lifshitz tail argument, by estimating the decay rate in a
trap-free region of size N

−1 0 N N+11

On a finite sample of size N, the survival rate decreases as SN(t) ∼ e−λt

with λ ' π2

N2 .

Weighing this decay rate with the probability (1− c)N of finding a free
region of size N and optimizing over N for large t (saddle point), we
recover the celebrated stretched exponential formula

Sclas(t) ∼ exp

(
−3

2

(
2π2| log(1− c)|2t

)1/3
)

In dimension d , the 1/3 exponent becomes d/(d + 2).
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The quantum Lifshitz Donsker-Varadhan formula

For a quantum-walker, the spectrum of the effective Hamiltonian is
complex. It can be shown that the lowest decay mode in a region of size
N is the eigenvalue with smallest imaginary part

λ = −2Im(E1) ' 8π2f

N3γ

The stretched exponential law for the survival probability of a quantum
walker is then obtained as

SQW(t) ∼ exp

(
−4

3

(
24π2f

γ
| log(1− c)|3t

)1/4
)

The classical 1/3 exponent has become 1/4 for the quantum problem. In
arbitrary dimensions, the exponent is d/(d + 3) in the quantum case.
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Inserting particles
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Symmetric exclusion with a source

Consider (classical) random walkers with exclusion on Z. A particle is
inserted at site 0, with rate Γ if the site is empty.
What is the statistics of N(t) the total number of particles in the lattice
at time t (starting from an empty state)?

3 41 2−1−2−4 −3 0

1 1

Γ

〈N〉 '


4
√

t
π d = 1

2πt
ln t d = 2

Γ
1+ΓWd

t d > 2

〈N2〉c '


4(3− 2

√
2)
√

t
π d = 1

V2
t

ln t d = 2
Γ

1+ΓWd
t d > 2

where Wd = d
2

∫ 2π

0
. . .
∫ 2π

0

∏d
i=1

dqi
2π

1∑d
i=1(1−cos qi )

is the Watson integral.

Note that the leading order terms do not depend on Γ for d = 1, 2.
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Quantum version with Free Fermions

What happens if we replace SEP particles by free fermions?

3 41 2−1−2−4 −3 0

Γ

Unitary Evolution: U(t) = eiHt with H =
∑

n c†ncn+1 + cnc†n+1

The effective dynamics for the insertion of particles at site 0 and at rate
Γ is given by

∂tρ = −i[H, ρ] + Γ
(
2LρL† − {L†L, ρ}

)
where ρ is the density matrix and the insertion operator is given by

L = c†0

In continuous set-up, see M. Butz and H. Spohn, Dynamical Phase
transition for a quantum particle source (2010).
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Closed equations for correlators

The average particle number in the system grows linearly with time

N(t) ' Cd(Γ)t

We wish to determine how the growth factor depends on the injection
rate Γ and on the dimension d .

Using the Lindblad equation, one derives closed evolution equations for
the 2-point correlators σi,j(t) = 〈c†i cj〉t

σ̇i,j =i (σi+1,j + σi−1,j − σi,j+1 − σi,j−1)− Γ (δi,0σi,j + δj,0σi,j − 2δi,0δj,0)

The average total number of particles is

N(t) =
∞∑

n=−∞
σn,n(t)

One can compute this average by studying the dual problem of removing
particles at the origin, with Lindblad (Kraus) operator L =

√
Γ c0.
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Average number of particles

In the dual problem, we start with a system full of holes and we remove
holes at the origin. The equations for the two-body correlators are given
by

dσi,j
dt

= i (σi+1,j + σi−1,j − σi,j+1 − σi,j−1)− Γ (δi,0σi,j + δj,0σi,j)

Exact solutions of these equations can be constructed by factorization of
wave-functions for the non-unitary optical potential

σi,j(t) = ψi (t)ψ∗j (t)

where the wave-functions obey the non-unitary Schrödinger equation

i
dψn(t)

dt
= ψn+1(t) + ψn−1(t)− iΓ δn0 ψn(t)

This one-body dynamics is strictly identical to the one we studied for the
survival problem, and it can readily be solved by going to Fourier-Laplace
transform.
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Values of the growth rates

Exact expression for Cd(Γ) can be derived by using lattice Green
functions.

• In d =1:

C1(Γ) = 2Γ− 2Γ2

π

[
γ−2 +

(
γ−1 − γ−3

)
tan−1 γ

]
with γ =

√
(Γ/2)2 − 1

• In d =2: C2(Γ) = 2Γ− 16
π Γ2[I1(Γ) + I2(Γ)] with

I1 =

∫ 1

0

dx
K (x) + K (x ′)

[ΓK (x)]2 + [Γ K (x ′) + 2π]2
and I2 =

∫ 1

0

dx

Γ2x2 + [2π/K (x)]2

where K (x) =
∫ π/2

0
dθ√

1−x2 sin2 θ
is the complete elliptic integral.

The calculation of higher moments of N, of its full statistics, of the
density profiles at a given time, are interesting open problems, that may
be probed experimentally on cold atoms.
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Growth rate: Zeno effect

For large Γ, the growth rate decreases with Γ as Cd(Γ) ' 2d
Γ
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Density profiles
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Density profile of injected particles for Γ = 0.05 and Γ = 2.5. Blue line
shows the numerical exact result obtained at a time t = 200 in rescaled
coordinates.
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Density profile in 2d
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Density profile on a 100× 100 square lattice at time t = 25 for Γ = 0.1.
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Open questions

We have calculated the average growth of the number of particles as a
function of time.

• Can we determine the variance?

• Can we calculate the full counting statistics (Large deviations)?
(For the semi-infinite set-up see Sasamoto et al. 1901.07228.)

• What happens for bosons?

• Can we find density profiles (done for free fermions in 1d)?

• Is there a hydrodynamic description?
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Conclusion

Quantum walks are the quantum analogs of classical walks. They provide
an intuition on Quantum Mechanics different from that from microscopic
physics.

Quantum walks can be defined and studied for their own sake or in
relation with quantum information theory.

Many probabilistic or statistical mechanics problems can be restated for
quantum walkers: recurrence times, survival probabilities, asymptotic
distributions etc...

Classical Stochastic Interacting Particle Systems (like the ASEP) are
extensively studied to understand non-equilibrium physics, hydrodynamic
limits, large deviations, dynamical phase transitions.

It is often thought that the word ‘exclusion’ in ASEP reflects a kind of
’Pauli Exclusion Principle’. This is not quite true. However, comparing
SEP with free fermions is instructive. Besides, some of the mathematical
structures involved are similar and integrability plays a key-role.
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