Stochastic Resetting

Satya N. Majumdar

Laboratoire de Physique Théorique et Modèles Statistiques,CNRS, Université Paris-Sud, France

Search Problems

Search problems are ubiquitous in nature

- search for Holy Grail
- search for Higgs boson
- data search (Google)
- animals searching for food (foraging)
- protein searching for a binding site on a DNA
- Visual search: locating a face in the crowd

Search Problems

Search problems are ubiquitous in nature

- search for Holy Grail
- search for Higgs boson
- data search (Google)
- animals searching for food (foraging)
- protein searching for a binding site on a DNA
- Visual search: locating a face in the crowd

A robust class of models: Intermittent target search strategies combine
(*i*) phases of slow motion (target detection)
(*ii*) phases of fast motion (searcher relocates but not reactive)

[O. Bénichou et. al. Rev. Mod. Phys. 83, 81 (2011)]

Visual search: a face in a crowd

Visual search in psychology

Search via diffusion and resetting

Schematic search trajectory

 \rightarrow reset to O

Schematic search trajectory

Other examples of stochastic resetting

• Searching for the global minimum in a complex energy landscape via simulated annealing

empirical observation: Resetting to the initial configuration from time to time (and starting afresh) helps finding new pathways out of a metastable configuration

Other examples of stochastic resetting

• Searching for the global minimum in a complex energy landscape via simulated annealing

empirical observation: Resetting to the initial configuration from time to time (and starting afresh) helps finding new pathways out of a metastable configuration

• Evolution of bacterial population: applying antibiotics from time to time resets the bacterial density to zero

Stochastic resetting in other contexts

- Multiplicative processes \Rightarrow Manrubia and Zanette, 1999
- Network search \Rightarrow Gelenbe, 2010
- Randomized search algorithms in combinatorial optimization \Rightarrow

Montanari and Zecchina, 2002 Janson and Peres, 2012

Stochastic Resetting

- Consider any process x(t) evolving freely by its own dynamics (deterministic or stochastic) during a certain random interval of time
- At the end of this random period, the process is reset to its initial position and the its dynamics restarts afresh
- The interval of free evolution between resets is drawn independently from a distribution $p(\tau) \implies$ renewal process
- For Poissonian resetting with a constant rate r: $p(\tau) = r e^{-r\tau}$

I: Diffusion with stochastic resetting

[M.R. Evans & S.M., PRL, 106, 160601 (2011)]

Diffusion with stochastic resetting: The model

Poissonian resetting

$$p(au) = r \, e^{-r au}$$

1

Diffusion with stochastic resetting: The model

Poissonian resetting

$$p(au) = r \, e^{-r au}$$

1

Dynamics: In a small time interval Δt

$$x(t + \Delta t) = x_0$$
 with prob. $r\Delta t$ (resetting)
= $x(t) + \eta(t)\Delta t$ with prob. $1 - r\Delta t$ (diffusion)

Diffusion with stochastic resetting: The model

Poissonian resetting

$$p(\tau) = r e^{-r\tau}$$

Dynamics: In a small time interval Δt

 $\begin{aligned} x(t + \Delta t) &= x_0 & \text{with prob. } r\Delta t & (\text{resetting}) \\ &= x(t) + \eta(t) \Delta t & \text{with prob. } 1 - r\Delta t & (\text{diffusion}) \\ \eta(t) \to \text{Gaussian white noise: } \langle \eta(t) \rangle &= 0 \text{ and } \langle \eta(t)\eta(t') \rangle &= 2 D \,\delta(t - t') \\ & \text{[M.R. Evans & S.M., PRL, 106, 160601 (2011)]} \end{aligned}$

Prob. density $p_r(x, t)$ with resetting rate r > 0

 $p_r(x, t) \rightarrow \text{prob. density at time } t,$ given $p_r(x, 0) = \delta(x - x_0)$

• In the absence of resetting (r = 0):

$$p_0(x,t) = \frac{1}{\sqrt{4\pi D t}} \exp[-(x-x_0)^2/4Dt]$$

Prob. density $p_r(x, t)$ with resetting rate r > 0

 $p_r(x, t) \rightarrow \text{prob. density at time } t,$ given $p_r(x, 0) = \delta(x - x_0)$

• In the absence of resetting (r = 0):

$$p_0(x,t) = \frac{1}{\sqrt{4\pi D t}} \exp[-(x-x_0)^2/4Dt]$$

• In the presence of resetting (r > 0):

 $p_r(x,t) = ?$

Renewal solution valid at all times t

 $\tau \rightarrow {\rm time \ since \ the \ last \ resetting} \\ {\rm during \ which \ free \ diffusion}$

• $0 \le au \le t \to random variable$

Prob. $[\tau|t] = r e^{-r\tau}$ for $0 \le \tau < t$ = $e^{-rt} \delta(\tau - t)$ for $\tau = t$ (no resetting in [0, t])

Renewal solution valid at all times t

 $au
ightarrow {
m time since the last resetting} \ {
m during which free diffusion}$

• $0 \le au \le t \to random variable$

Prob. $[\tau|t] = r e^{-r\tau}$ for $0 \le \tau < t$ = $e^{-rt} \delta(\tau - t)$ for $\tau = t$ (no resetting in [0, t])

• Renewal structure:

$$p_{r}(x,t) = \int_{0}^{t} d\tau \left(r \, e^{-r \, \tau} \right) p_{0}(x,\tau) + e^{-r \, t} \, p_{0}(x,t)$$

 \implies full exact solution at all times t

where $p_0(x,\tau) = \text{diffusion propagator} = \frac{1}{\sqrt{4\pi D \tau}} \exp[-(x-x_0)^2/4D\tau]$

Renewal solution valid at all times t

 $\tau \rightarrow {\rm time \ since \ the \ last \ resetting} \\ {\rm during \ which \ free \ diffusion}$

• $0 \leq \tau \leq t \rightarrow$ random variable

Prob. $[\tau|t] = r e^{-r\tau}$ for $0 \le \tau < t$ = $e^{-rt} \delta(\tau - t)$ for $\tau = t$ (no resetting in [0, t])

Renewal structure:

$$p_r(x,t) = \int_0^t d\tau (r e^{-r\tau}) p_0(x,\tau) + e^{-rt} p_0(x,t)$$

 \implies full exact solution at all times t

where $p_0(x,\tau) = \text{diffusion propagator} = \frac{1}{\sqrt{4\pi D \tau}} \exp[-(x - x_0)^2/4D\tau]$

• As
$$t \to \infty$$
, $p_r^{\text{st}}(x) = r \int_0^\infty p_0(x,\tau) e^{-r\tau} d\tau = \frac{\alpha_0}{2} \exp[-\alpha_0 |x - x_0|]$
where $\alpha_0 = \sqrt{r/D}$

Stationary State

Exact solution
$$\rightarrow \left| p_r^{\text{st}}(x) = \frac{\alpha_0}{2} \exp[-\alpha_0 |x - x_0|] \right|$$
 with $\alpha_0 = \sqrt{r/D}$

Stationary State

Exact solution
$$\rightarrow \left| p_r^{\text{st}}(x) = \frac{\alpha_0}{2} \exp[-\alpha_0 |x - x_0|] \right|$$
 with $\alpha_0 = \sqrt{r/D}$

- \rightarrow nonequilibrium stationary state (NESS)
- $\Rightarrow \text{ current carrying with} \\ \text{detailed balance} \rightarrow \text{violated}$

 $p_r^{\rm st}(x) = \alpha_0 \, \exp[-V_{\rm eff}(x)]$

effective potential:

 $V_{\rm eff}(x) = \alpha_0 |x - x_0|$

II: Unusual temporal relaxation

$$p_r(x,t) \sim \exp[-\alpha_0 |x - x_0|] \qquad \text{for } |x - x_0| \le \xi(t) \quad (\text{NESS})$$
$$\sim \exp[-r t - |x - x_0|^2 / 4Dt] \quad \text{for } |x - x_0| \ge \xi(t) \quad (\text{TRANSIENT})$$

$$p_r(x,t) \sim \exp[-\alpha_0 |x - x_0|] \qquad \text{for } |x - x_0| \le \xi(t) \quad (\text{NESS})$$
$$\sim \exp[-r t - |x - x_0|^2 / 4Dt] \quad \text{for } |x - x_0| \ge \xi(t) \quad (\text{TRANSIENT})$$

where $\alpha_0 = \sqrt{r/D}$ and $\xi(t) = \sqrt{4 D r} t \Rightarrow$ growing length scale

$$p_r(x,t) \sim \exp[-\alpha_0 |x - x_0|] \qquad \text{for } |x - x_0| \le \xi(t) \quad (\text{NESS})$$
$$\sim \exp[-r t - |x - x_0|^2/4Dt] \quad \text{for } |x - x_0| \ge \xi(t) \quad (\text{TRANSIENT})$$

where $\alpha_0 = \sqrt{r/D}$ and $\xi(t) = \sqrt{4 D r} t \Rightarrow$ growing length scale

 \implies NESS gets established on larger and larger length scales

Large deviation form:
$$p_r(x, t) \sim \exp\left[-t I\left(\frac{|x-x_0|}{t}\right)\right]$$

Large deviation form:
$$p_r(x, t) \sim \exp\left[-t I\left(\frac{|x-x_0|}{t}\right)\right]$$

where the rate function

$$\begin{split} I(y) &= \alpha_0 \, |y| \qquad \text{for } |y| \leq y^* = \sqrt{4Dr} \\ &= r + y^2/4D \qquad \text{for } |y| \geq y^* = \sqrt{4Dr} \end{split}$$

Large deviation form:
$$\rho_r(x,t) \sim \exp\left[-t I\left(\frac{|x-x_0|}{t}\right)\right]$$

where the rate function

$$\begin{split} I(y) &= \alpha_0 \, |y| & \text{for } |y| \leq y^* = \sqrt{4Dr} \\ &= r + y^2/4D & \text{for } |y| \geq y^* = \sqrt{4Dr} \end{split}$$

second derivative I''(y) is discontinuous at $y = y^*$

 \implies 2-nd order dynamical phase transition

[S.M., S. Sabhapandit, G. Schehr, PRE, 91, 052131 (2015)]

III : Target Search: First-passage properties

 $Q_0(x_0, t) \rightarrow \text{persistence/survival prob.}$ of the target up to t, starting at x_0

satisfies the backward Fokker-Planck equation:

 $\partial_t Q_0(x_0, t) = D \, \partial_{x_0}^2 Q_0(x_0, t)$ for $x_0 \ge 0$

with appropriate boundary/initial cond.

 $Q_0(x_0, t) \rightarrow \text{persistence/survival prob.}$ of the target up to t, starting at x_0 satisfies the backward Fokker-Planck equation:

 $\partial_t Q_0(x_0, t) = D \partial_{x_0}^2 Q_0(x_0, t)$ for $x_0 \ge 0$ with appropriate boundary/initial cond.

• exact solution for survival prob. : $Q_0(x_0, t) = \operatorname{erf}(|x_0|/\sqrt{4Dt})$

 $Q_0(x_0, t) \rightarrow \text{persistence/survival prob.}$ of the target up to t, starting at x_0 satisfies the backward Fokker-Planck

equation:

 $\partial_t Q_0(x_0, t) = D \partial_{x_0}^2 Q_0(x_0, t)$ for $x_0 \ge 0$ with appropriate boundary/initial cond.

- exact solution for survival prob. : $Q_0(x_0, t) = \operatorname{erf}(|x_0|/\sqrt{4Dt})$
- first-passage prob. :

$$F_0(x_0, t) = -\partial_t Q_0(x_0, t) = \frac{x_0}{\sqrt{4\pi D t^3}} \exp[-x_0^2/4Dt] \xrightarrow[t \to \infty]{} t^{-3/2}$$

 $Q_0(x_0, t) \rightarrow \text{persistence/survival prob.}$ of the target up to t, starting at x_0 satisfies the backward Fokker-Planck equation:

 $\partial_t Q_0(x_0, t) = D \partial_{x_0}^2 Q_0(x_0, t)$ for $x_0 \ge 0$ with appropriate boundary/initial cond.

- exact solution for survival prob. : $Q_0(x_0, t) = \operatorname{erf}(|x_0|/\sqrt{4Dt})$
- first-passage prob. :

$$F_0(x_0, t) = -\partial_t Q_0(x_0, t) = \frac{x_0}{\sqrt{4\pi D t^3}} \exp[-x_0^2/4Dt] \xrightarrow[t \to \infty]{} t^{-3/2}$$

• Mean capture time $ightarrow ar{\mathcal{T}} = \int_0^\infty t \, F_0(x_0,t) \, dt = \infty$

Target search via diffusion with resetting

au
ightarrow time since the last resetting during which free diffusion

• $0 \le au \le t \to random variable$

Prob. $[\tau|t] = r e^{-r\tau}$ for $0 \le \tau < t$ = $e^{-rt} \delta(\tau - t)$ for $\tau = t$ (no resetting in [0, t])

Target search via diffusion with resetting

au
ightarrow time since the last resetting during which free diffusion

• $0 \le au \le t \to random variable$

Prob. $[\tau|t] = r e^{-r\tau}$ for $0 \le \tau < t$ = $e^{-rt} \delta(\tau - t)$ for $\tau = t$ (no resetting in [0, t])

Renewal equation for survival prob. $Q_r(x_0, t)$:

$$Q_r(x_0,t) = \int_0^t d\tau \left(r \, e^{-r \, \tau} \right) Q_0(x_0,\tau) \, Q_r(x_0,t-\tau) + e^{-r \, t} \, Q_0(x_0,t)$$

 $au
ightarrow ext{time since the last resetting}$ during which free diffusion • $0 \le au \le t
ightarrow ext{random variable}$ $ext{Prob}[au|t] = r e^{-r au}$ for $0 \le au \le$

Prob.
$$[\tau|t] = r e^{-r\tau}$$
 for $0 \le \tau < t$
= $e^{-rt} \delta(\tau - t)$ for $\tau = t$
(no resetting in $[0, t]$)

Renewal equation for survival prob. $Q_r(x_0, t)$:

$$Q_r(x_0,t) = \int_0^t d\tau \left(r \, e^{-r \, \tau} \right) Q_0(x_0,\tau) \, Q_r(x_0,t-\tau) + e^{-r \, t} \, Q_0(x_0,t)$$

Laplace transform: $\tilde{Q}_r(x_0, s) = \int_0^\infty Q_r(x_0, t) e^{-st} dt$

 $au
ightarrow ext{time}$ since the last resetting during which free diffusion • $0 \le au \le t
ightarrow$ random variable

Prob. $[\tau | t] = r e^{-r\tau}$ for $0 \le \tau < t$ = $e^{-rt} \delta(\tau - t)$ for $\tau = t$ (no resetting in [0, t])

Renewal equation for survival prob. $Q_r(x_0, t)$:

$$Q_r(x_0,t) = \int_0^t d\tau \left(r \, e^{-r \, \tau} \right) Q_0(x_0,\tau) \, Q_r(x_0,t-\tau) + e^{-r \, t} \, Q_0(x_0,t)$$

Laplace transform: $\tilde{Q}_r(x_0, s) = \int_0^\infty Q_r(x_0, t) e^{-s t} dt$

$$ilde{Q}_{r}(x_{0},s) = rac{ ilde{Q}_{0}(x_{0},s+r)}{1-r ilde{Q}_{0}(x_{0},s+r)}$$

Exact survival probability

• Survival prob. in the presence of resetting:

$$\tilde{Q}_r(x_0,s) = rac{\tilde{Q}_0(x_0,s+r)}{1-r\tilde{Q}_0(x_0,s+r)}$$

Exact survival probability

• Survival prob. in the presence of resetting:

$$\tilde{Q}_r(x_0,s) = rac{\tilde{Q}_0(x_0,s+r)}{1-r\tilde{Q}_0(x_0,s+r)}$$

• Using, for the free diffusion (r = 0)

$$ilde{Q}_0(x_0,s) = rac{1}{s} \left[1 - e^{-\sqrt{s/D} x_0}
ight]$$

Exact survival probability

• Survival prob. in the presence of resetting:

$$ilde{Q}_r(x_0,s) = rac{ ilde{Q}_0(x_0,s+r)}{1-r\, ilde{Q}_0(x_0,s+r)}$$

• Using, for the free diffusion (r = 0)

$$ilde{Q}_0(x_0,s) = rac{1}{s} \left[1 - e^{-\sqrt{s/D} \, x_0}
ight]$$

$$\tilde{Q}_r(x_0,s) = \frac{1 - \exp\left(-\sqrt{(r+s)/D} x_0\right)}{s + r \, \exp\left(-\sqrt{(r+s)/D} x_0\right)}$$

[M.R. Evans & S.M., PRL, 106, 160601 (2011)]

Mean capture/search time

Mean capture time: $\bar{T} = \int_0^\infty t \left[-\partial_t Q_r(x_0, t) \right] dt = \tilde{Q}_r(x_0, s = 0)$

Mean capture/search time

Mean capture/search time

mean capture time is ∞ for r = 0, but finite when r > 0

$$\overline{T}(r, x_0) = \frac{1}{r} \left[\exp\left(\sqrt{r/D} x_0\right) - 1 \right]$$

• For fixed x_0 and D, the mean capture time $\overline{T}(r, x_0)$ diverges as $r \to 0$ and also as $r \to \infty$

- For fixed x_0 and D, the mean capture time $\overline{T}(r, x_0)$ diverges as $r \to 0$ and also as $r \to \infty$
- As a function of r, $\overline{T}(r, x_0)$ has a minimum at $r = r^*$

- For fixed x_0 and D, the mean capture time $\overline{T}(r, x_0)$ diverges as $r \to 0$ and also as $r \to \infty$
- As a function of r, $\overline{T}(r, x_0)$ has a minimum at $r = r^*$

optimal resetting rate r^* is given by:

$$r^* = \gamma^2 \frac{D}{x_0^2}$$
 where $\gamma - 2(1 - e^{-\gamma}) = 0$ $\Rightarrow \gamma = 1.59362...$

(M.R. Evans and S.M., Phys. Rev. Lett. 106, 160601 (2011))

Typical trajectories for $r \to 0$ and $r \to \infty$

stationary target of radius a at 0 in d > 2

stationary target of radius a at 0 in d > 2

searcher starts at $R_0 > a$, diffuses, and resets with rate r

• $Q_r(R_0, t) \rightarrow$ survival prob. of the target starting at a radial distance R_0

stationary target of radius a at 0 in d > 2

- $Q_r(R_0, t) \rightarrow$ survival prob. of the target starting at a radial distance R_0
- Laplace transform $\tilde{Q}_r(R_0,s) = \int_0^\infty Q_r(R_0,t) \, e^{-s \, t} \, dt \to$ using renewal

stationary target of radius a at 0 in d > 2

- $Q_r(R_0, t) \rightarrow$ survival prob. of the target starting at a radial distance R_0
- Laplace transform $ilde{Q}_r(R_0,s) = \int_0^\infty Q_r(R_0,t) \, e^{-s\,t} \, dt o$ using renewal
- mean capture time: $\overline{T} = \widetilde{Q}_r(R_0, s = 0)$

stationary target of radius a at 0 in d > 2

- $Q_r(R_0, t) \rightarrow$ survival prob. of the target starting at a radial distance R_0
- Laplace transform $ilde{Q}_r(R_0,s) = \int_0^\infty Q_r(R_0,t) \, e^{-s \, t} \, dt o$ using renewal
- mean capture time: $\bar{T} = \tilde{Q}_r(R_0, s = 0)$

$$\bar{T}(r,R_0) = \frac{1}{r} \left[\left(\frac{a}{R_0} \right)^{\nu} \frac{K_{\nu}(a\sqrt{r/D})}{K_{\nu}(R_0\sqrt{r/D})} - 1 \right] \text{ where } \nu = 1 - d/2$$

stationary target of radius a at 0 in d > 2

searcher starts at $R_0 > a$, diffuses, and resets with rate r

- $Q_r(R_0, t) \rightarrow$ survival prob. of the target starting at a radial distance R_0
- Laplace transform $ilde{Q}_r(R_0,s) = \int_0^\infty Q_r(R_0,t) \, e^{-s\,t} \, dt o$ using renewal
- mean capture time: $\bar{T} = \tilde{Q}_r(R_0, s = 0)$

 $\bar{T}(r,R_0) = \frac{1}{r} \left[\left(\frac{a}{R_0} \right)^{\nu} \frac{K_{\nu}(a\sqrt{r/D})}{K_{\nu}(R_0\sqrt{r/D})} - 1 \right] \text{ where } \nu = 1 - d/2$

• Once again, there is an optimal r^* that minimizes $\overline{T}(r, R_0)$ in all d

[M.R. Evans and S.M., J. Phys. A: Math. Theo. 47, 285001 (2014)]

IV : Arbitrary process with resetting

Renewal solution for an arbitrary process

 $\begin{aligned} \tau &\to \text{time since the last resetting} \\ \text{during which free evolution} \end{aligned}$ • $0 \leq \tau \leq t \rightarrow \text{random variable} \\ \text{Prob.}[\tau|t] = r e^{-r\tau} \quad \text{for } 0 \leq \tau < t \\ = e^{-rt} \delta(\tau - t) \text{ for } \tau = t \\ \quad (\text{no resetting in } [0, t]) \end{aligned}$

Renewal solution for an arbitrary process

 $\tau \rightarrow \text{time since the last resetting}$ during which free evolution $• <math>0 \le \tau \le t \rightarrow \text{random variable}$ $\text{Prob.}[\tau|t] = r e^{-r\tau} \quad \text{for } 0 \le \tau < t$ $= e^{-rt} \delta(\tau - t) \text{ for } \tau = t$ (no resetting in [0, t])

Renewal structure:

$$p_r(x,t) = \int_0^t d\tau \, (r \, e^{-r \, \tau}) \, p_0(x,\tau) + e^{-r \, t} \, p_0(x,t)$$

 \implies full exact solution at all times t

where $p_0(x, t) \longrightarrow bare$ propagator

Renewal solution for an arbitrary process

 $\tau \rightarrow \text{time since the last resetting}$ during which free evolution $• <math>0 \le \tau \le t \rightarrow \text{random variable}$ $\text{Prob.}[\tau|t] = r e^{-r\tau} \quad \text{for } 0 \le \tau < t$ $= e^{-rt} \delta(\tau - t) \text{ for } \tau = t$ (no resetting in [0, t])

Renewal structure:

$$p_r(x,t) = \int_0^t d\tau \, (r \, e^{-r \, \tau}) \, p_0(x,\tau) + e^{-r \, t} \, p_0(x,t)$$

 \implies full exact solution at all times t

where $p_0(x, t) \longrightarrow bare$ propagator

• As
$$t \to \infty$$
 $p_r^{\mathrm{st}}(x) = r \int_0^\infty p_0(x,\tau) e^{-r\tau} d\tau$

Auto-correlation function with resetting

Auto-correlation function:

 $C_{\mathbf{r}}(t_1, t_2) = \langle X_{\mathbf{r}}(t_1) X_{\mathbf{r}}(t_2) \rangle - \langle X_{\mathbf{r}}(t_1) \rangle \langle X_{\mathbf{r}}(t_2) \rangle$

Auto-correlation function with resetting

Auto-correlation function:

 $C_{\mathbf{r}}(t_1, t_2) = \langle X_{\mathbf{r}}(t_1) X_{\mathbf{r}}(t_2) \rangle - \langle X_{\mathbf{r}}(t_1) \rangle \langle X_{\mathbf{r}}(t_2) \rangle$

Exploiting the renewal structure: for $t_1 \leq t_2$

$$C_r(t_1, t_2) = e^{-r(t_2 - t_1)} \left[r \int_0^{t_1} d\tau \, e^{-r\tau} \, C_0(\tau, t_2 - t_1 + \tau) + e^{-rt_1} C_0(t_1, t_2) \right]$$

where $C_0(t_1, t_2) \longrightarrow$ bare correlator (in the absence of resetting)

[S.M. & G. Oshanin, J. Phys. A: Math. Theo. 51, 435001 (2018)]

 $\tau \rightarrow \text{time since the last resetting} \\ \text{during which free diffusion} \\ \bullet \ 0 \le \tau \le t \rightarrow \text{random variable} \\ \text{Prob.}[\tau|t] = r \ e^{-r\tau} \quad \text{for } 0 \le \tau < t \\ = e^{-rt} \ \delta(\tau - t) \text{ for } \tau = t \\ \quad (\text{no resetting in } [0, t]) \end{aligned}$

 $\begin{aligned} \tau &\to \text{time since the last resetting} \\ \text{during which free diffusion} \end{aligned}$ • $0 \leq \tau \leq t \rightarrow \text{random variable} \\ \text{Prob.}[\tau|t] = r e^{-r\tau} \quad \text{for } 0 \leq \tau < t \\ = e^{-rt} \delta(\tau - t) \text{ for } \tau = t \\ \quad (\text{no resetting in } [0, t]) \end{aligned}$

Renewal equation for survival prob. $Q_r(x_0, t)$:

$$Q_r(x_0,t) = \int_0^t d\tau \left(r \, e^{-r \, \tau} \right) Q_0(x_0,\tau) \, Q_r(x_0,t-\tau) + e^{-r \, t} \, Q_0(x_0,t)$$

where $Q_0(x_0, t) \longrightarrow$ bare surv. prob. without resetting

 $\begin{aligned} \tau &\to \text{time since the last resetting} \\ \text{during which free diffusion} \end{aligned}$ • $0 \leq \tau \leq t \rightarrow \text{random variable} \\ \text{Prob.}[\tau|t] = r e^{-r\tau} \quad \text{for } 0 \leq \tau < t \\ = e^{-rt} \delta(\tau - t) \text{ for } \tau = t \\ \quad (\text{no resetting in } [0, t]) \end{aligned}$

Renewal equation for survival prob. $Q_r(x_0, t)$:

$$Q_r(x_0,t) = \int_0^t d\tau \left(r \, e^{-r \, \tau} \right) Q_0(x_0,\tau) \, Q_r(x_0,t-\tau) + e^{-r \, t} \, Q_0(x_0,t)$$

where $Q_0(x_0, t) \longrightarrow$ bare surv. prob. without resetting Laplace transform: $\tilde{Q}_r(x_0, s) = \int_0^\infty Q_r(x_0, t) e^{-st} dt$

 $\begin{aligned} \tau &\to \text{time since the last resetting} \\ \text{during which free diffusion} \end{aligned}$ • $0 \leq \tau \leq t \rightarrow \text{random variable} \end{aligned}$ $\begin{aligned} \operatorname{Prob.}[\tau|t] &= r \, e^{-r\tau} & \text{for } 0 \leq \tau < t \\ &= e^{-rt} \, \delta(\tau - t) \text{ for } \tau = t \\ &\quad (\text{no resetting in } [0, t]) \end{aligned}$

Renewal equation for survival prob. $Q_r(x_0, t)$:

$$Q_r(x_0,t) = \int_0^t d\tau \left(r \, e^{-r \, \tau} \right) Q_0(x_0,\tau) \, Q_r(x_0,t-\tau) + e^{-r \, t} \, Q_0(x_0,t)$$

where $Q_0(x_0, t) \longrightarrow$ bare surv. prob. without resetting Laplace transform: $\tilde{Q}_r(x_0, s) = \int_0^\infty Q_r(x_0, t) e^{-st} dt$

$$\tilde{Q}_r(x_0,s) = rac{\tilde{Q}_0(x_0,s+r)}{1-r\tilde{Q}_0(x_0,s+r)}$$

Various generalisations of stochastic resetting

Over the last few years, effects of stochastic resetting have been extensively studied in many different contexts:

- Enzymatic reactions in biology (Michaelis-Menten reaction)
- Diffusion in a confining potential/box
- Lévy flights, Lévy walks, fractional BM with resetting
- Space-dependent resetting rate r(x)
- Power-law distributed time interval between successive resets
- Search via nonequilibrium reset dynamics vs. equilibrium dynamics
- Resetting dynamics of extended systems (e.g. fluctuating interfaces)
- Properties of functionals of reset processes
- Memory dependent reset
- Quantum dynamics with reset
- Active run-and-tumble dynamics with reset
- $\dots \implies$ a long list ! (many people have made important contributions !)

Theory of resetting \implies rapidly developing

Theory of resetting \implies rapidly developing

How about experiments?

Theory of resetting \implies rapidly developing

How about experiments?

Ongoing experiments on target search via diffusion with resetting using optical traps set-up (in collaboration with the group of S. Ciliberto at ENS-Lyon).

Summary and Conclusion

• A brief and partial overview of Stochastic Resetting a rapidly evolving field of research

Summary and Conclusion

- A brief and partial overview of Stochastic Resetting a rapidly evolving field of research
- Leads to \Rightarrow new nonequilibrium stationary state (NESS)

Summary and Conclusion

- A brief and partial overview of Stochastic Resetting a rapidly evolving field of research
- Leads to ⇒ new nonequilibrium stationary state (NESS)
- Unusual temporal relaxation to the stationary state

 \Rightarrow 2-nd order dynamical phase transition for diffusion with resetting
Summary and Conclusion

- A brief and partial overview of Stochastic Resetting a rapidly evolving field of research
- Leads to \Rightarrow new nonequilibrium stationary state (NESS)
- Unusual temporal relaxation to the stationary state

 \Rightarrow 2-nd order dynamical phase transition for diffusion with resetting

• Search of a stationary target via diffusion+resetting \rightarrow efficient Mean search time $\overline{T}(r)$ has a minimum at an optimal resetting rate r^* in all dimensions

 \dots many more recent studies on the dependence of r^* on system parameters \longrightarrow phase transitions

Summary and Conclusion

- A brief and partial overview of Stochastic Resetting a rapidly evolving field of research
- Leads to \Rightarrow new nonequilibrium stationary state (NESS)
- Unusual temporal relaxation to the stationary state

 \Rightarrow 2-nd order dynamical phase transition for diffusion with resetting

• Search of a stationary target via diffusion+resetting \rightarrow efficient Mean search time $\overline{T}(r)$ has a minimum at an optimal resetting rate r^* in all dimensions

... many more recent studies on the dependence of r^* on system parameters \longrightarrow phase transitions

Resetting \rightarrow rich and interesting static and dynamic phenomena

Collaborators

- D. Boyer, A. Falcon-Cortes (UNAM, Mexico)
- S. Ciliberto & group (ENS-Lyon, France)
- F. den Hollander (Leiden University, The Netherlands)
- M. R. Evans, J. Whitehouse (Edinburgh University, UK)
- L. Giuggioli (Bristol University, UK)
- S. Gupta (Belur University, Kolkata, India)
- L. Kusmierz (Inst. of Phys., Krakow, Poland \rightarrow Riken Center, Japan)
- M. Magoni (LPTMS, Orsay, France)
- K. Mallick (IPHT, Saclay, France)
- J. M. Meylahn, H. Touchette (Stellenbosch University, South Africa)
- B. Mukherjee, K. Sengupta (IACS, Kolkata, India)
- G. Oshanin (Sorbonne Université, Paris, France)
- S. Sabhapandit (RRI, Bangalore, India)
- G. Schehr (LPTMS, Orsay, France)

Selected references

- M. R. Evans and S. N. Majumdar, Phys. Rev. Lett. 106, 160601 (2011).
- M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 44, 435001 (2011).
- M. R. Evans, S. N. Majumdar, K. Mallick, J. Phys. A: Math. Theor. 46, 185001 (2013).
- S. Gupta, S. N. Majumdar, G. Schehr, Phys. Rev. Lett. 112, 220601 (2014).
- M. R. Evans and S. N. Majumdar J. Phys. A: Math. Theor. 47, 285001 (2014).
- L. Kusmierz, S. N. Majumdar, S. Sabhapandit, G. Schehr, Phys. Rev. Lett. 113, 220602 (2014).
- S. N. Majumdar, S. Sabhapandit, G. Schehr, PRE 91, 052131 (2015); 92, 052126 (2015).
- D. Boyer, M. R. Evans, S. N. Majumdar, J. Stat. Mech. P023208 (2017).
- A. Falcon-Cortes, D. Boyer, L. Giuggioli, S. N. Majumdar, Phys. Rev. Lett. 119, 140603 (2017).
- S. N. Majumdar and G. Oshanin, J. Phys. A: Math. Theo. 51, 435001 (2018).
- B. Mukherjee, K. Sengupta, and S. N. Majumdar, Phys. Rev. B 98, 104309 (2018).
- M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 51, 475003 (2018).
- M. R. Evans and S.N. Majumdar, J. Phys. A: Math. Theor. 52, 01LT01 (2019).
- D. Boyer, A. Falcon-Cortes, L. Giuggioli, and S. N. Majumdar, J. Stat. Mech. P053204 (2019).
- F. den Hollander, S. N. Majumdar, J. M. Meylahn, and H. Touchette, J. Phys. A: Math. Theor. 52, 175001 (2019).