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Consider unitary evolution pierced by repeated measurements.
The quantum version of the first passage time (Smoluchowski).
Quantum renewal equation.

Interference sub-spaces: the dark and bright.

Uncertainty principle and symmetry bounds.

Quantization of the return time, and more.
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Quantum Walks, U = exp(—iH7)

H =~y 37 ()i + 1]+ i + 1))

)

Eli Barkai, Bar-llan Univ.



Measurement protocol
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Quantum computing: is the quantum search superior to the
classical random walk? How to choose 7? optimal sampling?

Ambainis et al (2001), Krovi and Brun (2008), Grunbaum et al (2013) [X, = X /]
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First Detection Time: Definition

So, we consider a single quantum particle evolving under a Hermitian
Hamiltonian H.

Every = seconds, we make a measurement asking whether or not the
particle is detected at x,.

If yes, the game stops, and this gives the detection time.

If no, life goes on and r seconds later we measure again.....
We get the string (no, no, ... yes) and in the n-th entry a yes.
nt 1S the random first detection event.

What is the distribution of n? Can we find (n)?
will we detect the particle?
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What is non-trivial is that the measurement process “collapses” the
wave-function, setting v (xy;) = 0.

e The rest of the wave-function is unchanged, except for normalization
e In operator language, we “project out” the z,; component of the state.
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Classical First Passage

=+

Particles arriving at z at time ¢, first arrived at = some earlier time
t —t’ and returned there after ¢ additional steps.
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Quantum Renewal Equation

e ¢, amplitude of first detection probability (Dhar).

o F, =|¢,|° Prob. of first detection in the n-th attempt.

o P =), _,F, can be less than one even on finite graphs.

(@ |U () |hin)

2.

n
J=1

(@n|U [(n = 3) 7] |xar)

o For example: ¢ = (xn|U(7)|%in)

¢2 = (xum|U (1 — |zar) (xar]) Ulthin) -

Friedmann, DK, EB PRE (2017)
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Generating Function for ¢,

Generating Function:

n>0
A single site initial condition |v;,) = |z)-

o lenl0@le) !
) e 0@ o) 1+ a0 o)
But
L lear 0 (eas) = 3 2 ale T enr) = 3 2 arliry(nr)) = (arléy (z5a0)

and |v¢(z;x0)) 1S the generating function of the measurement-free
state starting at x,, at ¢ =0!

1
(@m (2 20))

d(z) =1~
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Take home message

The measurement free state function, |¢f...), a.k.a wave function free of measurement,
gives the amplitude of first detection event on a site.

Operationally: Solve the Schrodinger equation, find the generating function of
measurement free state function, perform inverse z transform, and get the detection
time statistics.

Some tricks
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Friedmann, DK, EB PRE (2017)
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Constructive interference
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Detection probability P,
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Detection probability

e Start in an initial state
10
i) = —= (1) + €Iry))
e From quantum renewal equation detection amplitudes sum up

1 5 TioT

Vin—T T, —T 0, T57"d

@, d——(¢’ d+ ey, )
" \/§ "

e If states |r;) and |r;) are equivalent with respect to detection. Then:
F;fz'”%rd = (1 +cosd)Fi"d

o Since S°°° . FVin7"d < 1 we have
(1 4 cosd) i Frivtd < 1.

n=1

Choose § = 0 SO Py (r; — 74) < 1.
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e More generally, consider a graph with v initial sites all equivalent with respect
to the detection. We have

P < 1/v

e Quantum detection is less efficient if compared with classical random walks.

EXACT VALUE SYMMETRY
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e More generally P, = >, |(bright,|1:,)|* and after the classification of the
bright states we find

g
Pd , = ! |errlL:l<xM‘El,m><El,m|¢in>‘2
- g
¢ l S s Ep )2

e In the case of no degeneracy (removal of symmetry) detection is unity.
e Disorder is good for efficient search [Plenio - light harvesting systems].
e P, is 7 independent.

e Valid beyond the stroboscopic protocol.

Thiel, Mualem, DK, EB (2019).
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Hilbert space under repeated measurement

Zeno Interference
T = 0 T £ 0
no symmetry symmetry
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Dark and Bright

e A bright/dark state is detected with probability one/zero.

e The Hilbert space can be decomposed into bright and dark subspaces.
e For rapid measurement this is related to the Zeno effect.

e Dark states are related to degeneracy and hence to symmetry.

e For degenerate states: |¢) = N ({(zp|E2)|E1) — (xnm|E1) | E2)) is dark.
e Also a non degenerate energy level can be dark if (x)/|E3) = 0.

e Alan Turing, Sudarshan, Misra, Plenio, Facchi, Paasazio, Caruso, Krovi ....
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Sketch- Dark Bright States

g, #Bright # Dark

A 1 1 0

5 1 4
8 1

7 1 6
1 1 0

Start |¢) = N ((zm|E2)|Er) — (xm|Ev)|E2)).
Find other orthogonal dark states total g; — 1.
From here get the total detection probability P,.;.
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Uncertainty Relation

APVar(H)y > [(xy] [H, D] |1in) |2

e AP is the deviation of the total detection probability from the initial
probability of detection.

AP = Paer — |{(inlxar)|”.

e Var(H),, is the variance of the energy in the detected state.
o D = |x) (x| is the measurement projector.

e On the RHS we connect the initial and final states.
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EXACT VALUE

UNCERTAINTY

—|A [N
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Into the bright space

e Let |3) be a bright state. Then f(H)|3) is also bright.
e To see this use (EP|f(H)|B) = 0.

o |zn), H|xas)....H"|xp)... are bright and so are:

1B1) = |za) and |By) = N <|xM> __Hlzw) )

(xm|H|zwm)
e From normalization, you get the fluctuations of H in the detected state.
Using

Paet > [(Bilthin)|* + |(Ba|in)|’

we get the uncertainty principle. Notice it is 7 independent.
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An L =6 Ring

Easy to compute ¢(z) for an L =6 ring with our hopping Hamiltonian.
e For example, for xg = x

® o] + 22 [

~ =121y 1 2= letyT 1
3(z) = 1 1
3 _|_ 3% |:z—162i’77'_1:| + 2% |:z—lei’y7'_1]

Going back to ¢, is a bit more complicated.

1) 2)
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(n) an Integer

— YT
0 1 2 3 4 5 6 4
[ (n> is quantized! Griinbaum, Velazquez, Werner Comm. Math. Phys (2013).

e Var[n] diverges at the exceptional points.
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Variance
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averaged first detection attempt

(n) zymy =0; x9g=3
20t '
15F
10}

5_

Tt Ty
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For z,;, =0, xo=1{1,2,4,5}:
e For all but some special sampling times the probability of being detected is
1/2. Half dark states.
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Ring of size L

o If X,, = X, the particle is detected with probability one.
e For the same initial condition and besides exceptional sampling times

L£2 | is even
(n) =

L+l is Odd

e Exceptional sampling times

AET =21k

AE=E;—E; >0
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Infinite Lattice in One Dimension + =1

The computation of ¢(z) is easy. For example for zo =z, = 0:

1

) =1

For large n >> X/,

F, ~ 4”1%0’7) cos® [2n — B(Xy, T)]

e For Xo =0, r=1, 8 = —7/4 independent of r.
e For Xo>>1, or 7 <<'1

P~ (XO)QCOSQ(ZnT—ﬂ‘/4).

T n3

e For Classical Diffusion F,, ~ n=3/2.

Thiel, EB, Kessler PRL (2018)
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Infinite Lattice

Filled Dots = Exact, Circles=Asymptotic
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Critical Sampling the Infinite Lattice

2yt =7
I,
001+
10_45
107 3
| | . . | ey | | . . | ey | | n
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e For 2y7 — m we have F, ~ n~° while at critical sampling F,, ~ n™?/4.

e AET =27w and here AE = 4~ is the width of the energy band.
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First Detection on a line
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Thiel, EB, Kessler PRL (2018)
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The incidence time

e The time the wave packet hits the detector for the first time

Here AX = |Xo — Xu|, vy = maz|E| =2 (v =1, Ep = 2cos(k))
e For n < N;,. we have nearly zero probability of detection.
e More precisely, for small n, with X,;, =0

1 enT 2AX
F, ~
2rAX \AX
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Final Remarks

Studied First Detection Time for Stroboscopic measurements.

Yields a direct analog of classical renewal equation with the first
detection amplitude playing the role of the first-return probability.

Classical = Random Walk Theory and Newtonian mechanics.
Deviations from the latter, are quantified with uncertainty principle.

Resonance conditions yield discontinuities, divergences in the first-
detection statistics.

Even on small graphs detection probability is not unity (provided
there is no disorder).

Dark states are classified and with them we get the detection
probability.
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How you track matters

So far the measurements were local, yielding a string no, no, ...yes.

Consider a graph and a stroboscopic measurement of X, this yields
the string 1,42,32,15,....0 and we stop when the node 0 is visited for
first time.

Also here (n) is quantized, but it is not the same as the local
detection protocol (work with Avihai Didi).

That is for the next talk.
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Classical picture: Grunbaum et al. Charge Theory

Charge magnitude: py = |(Ex|vin|?. Location: exp(iET).

Goal: Find the zeros z; of the force field.

# of charges = (n).

Large fluctuations of n when |z;| — 1. Only for return problem: a LOOP..
Algebra: V(z) = 3, prln|e’r™ — 2| and ¢(z) = 2TV =

1=1 z¥>—-1°"
i
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Single Charge Theory

2\23|2
1—|z8|2'

1 PO ~
zg =1 S opi /e (7] and Var(n)

Electrostatics: if one of the charges is weak we have a zero close to the unit circle.

QM: if pi, = |(Ex|vin|? << 1 there is a component of the wave function that is difficult
to detect, and this gives large quantum fluctuations.
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Two charge theory

-P1—P2 4dp1p2 Py 1] £2
zp ~ 1+ Zp1+p25 T |:(p1—|—p2)3 Zj#1,2 exp(iEj7T)—1 2} 0

20zpl® 5 (p1+p2)3 s
Var(n) ~ - i 2—101]9262 is independent of the background.
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Three charge theory

5012 9 T(s7)*
But why care? Var(n) ~ S _ 2l (1 “a () -+ c.c>

TR\ -2 (=)

Mixed

\ 7
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Charge configuration Zeno limit 7 — 0

# of charges is number of distinct energy levels.

Ruoyu Yin, Ziegler, EB (in preparation)
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Zeno Limit
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Winding number for the return problem

oo

e The generating function ¢(z) = 320, 2"¢,.

e From the quantum renewal equation ¢(z) = 11‘??'7(02;”';@) with
U(z) =3, 2" exp(—iHTn).
e Decompose in an energy basis: |vn) = >, (Ex|tin)| Ex)-

o Use exp(—iHn7)|EL) = exp(—iEynT)|EL), sum a geometric series and use
normalization >, pr = 1 here p, is the probability of finding the initial
condition in energy state k&

Z zpk;e_iEk‘T
k’ 1_Ze—iEkT

ST

e Rearrange, use 1/[exp(iz)—1] = [-1 —zcot(x/2)]/2 and consider z = exp(i0),
i.e. we are on the unit circle

b () = exp [if(0)

$(2) =

where
Ek’T — 0
0) = 2ArcTan t—m78M | .
0= sheton | S 25
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e From here: eventually the process is detected (for discrete spectrum, and
return problem) and this follows from |exp[if(0)| = 1.

e The average of n is an integer equal to the winding number.

e More specifically (n) is the number of distinct energy levels with pi, # 0
unless AET = 27j.
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Winding up the generating function. RETURN problem.

Plot qg(z) where z = exp(z’@) and —7m < 6 < 7 Griinbaum et al. (2013).

Simple model of Y structure, number of distinct energy levels 3, but one energy state
is orthogonal to the detected site, so effective dimension of the Hilbert space is 2.
Here we consider the return to center of structure.
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Topology modified at specific sampling times

When AFET = 27, winding number exhibits a discontinuity (n) =2 — 1.
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Generating function - basic formalism

1 d" -
Pn = a@@b(zﬂzzo (1)
or
. 1 n —n—1
Y oy j{jqﬁ(z)z dz (2)

Probability of being detected:

l—SOO:ZFn:Z|¢n‘2:
n=1 n=1

1 /27r - 0k = x —ifl 1 2T a2
1 b S e dez—/ 1B(e)|2d6. 3)

Similarly

(n) = EjjlnF -/ T ()] (—%) H(e)do. (4)
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A shorthand notation is (n) = (¢| — i9s| ).
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First Detection theory
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Total Detection
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Detection
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Prefactor Abs
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Detection period T
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Prefactor Abs

Tc T T T T
3 (A) | p—
=4
_|_

/2 - — =8
am} — £=16
2 - 1| — &=32
2 O._ _ 2‘164

— eory

==

T
Q
(=4
_|_
@_n/Z
>}
N
S
==

I I I
0 /8 /4 37/8 /2
Detection Period T

Eli Barkai, Bar-llan Univ.



Why do we find dark states?
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two boson model
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Two charge theory
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Connection to Classical Renewal Formula

Schrodinger in 1915 formulated the "renewal formula”™ for the first
passage problem, relating the first passage probability F'(z,t) with the
absorption-free probability distribution P(x,t¢;z¢) for a random walker
released at = =z, at time O:

P(x,t;x0) = 0z 2,010 + Z F(x,t"\P(z,t —t';x)
<t

Taking a z-transform of this equation yields a solution for F in terms
of the absorption-free propagator P:

([ P(z,2;7)) |
P(:Bg,z;xoo)’ L 7é L0
P(x,2) = 0g.4,+ F(z,2)P(0,2) = F(x,2) = <
1 — L. = o
L P(xg,z;x0)’

The parallel with our formula is clear

3(2) = { (warlw (s 20)/ (= 20))5 1= 1/ (ol (z20) |

Marrying Schrodinger’s Two Great Works!
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Detection probability P, =) _,F,

Unlike classical random walks in 1d probability of detecting the particle is not unity

Pdet
1.0,

08
0.6
04

0.2

Eli Barkai, Bar-llan Univ.



The Quantum Zeno Effect

o If g #4 xy lim,._ o F, = 0. The particle is not detected.

e Since the measurement zeroes the wave function at z,,, if we measure too
often, the particle will never get to z,,.

e "A watched quantum pot never boils"

e Mathematically it is easy to show:

lim $(2) = 2(Xa|in).
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