Introduction to the quantum first detected passage time problem

Eli Barkai

Friedman, Kessler, Mualem, Thiel

PRE 95, 032141 (2017)
PRL 120, 040502 (2018)
arXiv:1906.08108 [quant-ph] (2019)

Outline

Consider unitary evolution pierced by repeated measurements.
The quantum version of the first passage time (Smoluchowski).
Quantum renewal equation.
Interference sub-spaces: the dark and bright.
Uncertainty principle and symmetry bounds.
Quantization of the return time, and more.

Quantum Walks, $U=\exp (-i H \tau)$

$$
H=-\gamma \sum_{i}(|i\rangle\langle i+1|+|i+1\rangle\langle i|)
$$

Measurement protocol

Quantum computing: is the quantum search superior to the classical random walk? How to choose τ ? optimal sampling?

Ambainis et al (2001), Krovi and Brun (2008), Grunbaum et al (2013) [$X_{0}=X_{M}$]

First Detection Time: Definition

So, we consider a single quantum particle evolving under a Hermitian Hamiltonian H.
Every τ seconds, we make a measurement asking whether or not the particle is detected at x_{M}.
If yes, the game stops, and this gives the detection time.
If no, life goes on and τ seconds later we measure again.....
We get the string (no, no, ... yes) and in the n-th entry a yes.
$n \tau$ is the random first detection event.
What is the distribution of n ? Can we find $\langle n\rangle$? will we detect the particle?

What is non-trivial is that the measurement process "collapses" the

 wave-function, setting $\psi\left(x_{M}\right)=0$.- The rest of the wave-function is unchanged, except for normalization
- In operator language, we "project out" the x_{M} component of the state.

Classical First Passage

Particles arriving at x at time t, first arrived at x some earlier time $t-t^{\prime}$ and returned there after t^{\prime} additional steps.

Quantum Renewal Equation

- ϕ_{n} amplitude of first detection probability (Dhar).
- $F_{n}=\left|\phi_{n}\right|^{2}$ Prob. of first detection in the n -th attempt.
- $P_{\text {det }}=\sum_{n=1} F_{n}$ can be less than one even on finite graphs.

$$
\left\langle x_{M}\right| U(n \tau)\left|\psi_{i n}\right\rangle=\sum_{j=1}^{n}\left\langle x_{M}\right| U[(n-j) \tau]\left|x_{M}\right\rangle \phi_{j}
$$

- For example: $\phi_{1}=\left\langle x_{M}\right| U(\tau)\left|\psi_{i n}\right\rangle$

$$
\phi_{2}=\left\langle x_{M}\right| U\left(1-\left|x_{M}\right\rangle\left\langle x_{M}\right|\right) U\left|\psi_{i n}\right\rangle .
$$

Friedmann, DK, EB PRE (2017)

Generating Function for ϕ_{n}

Generating Function:

$$
\hat{\phi}(z) \equiv \sum_{n>0} z^{n} \phi_{n}
$$

A single site initial condition $\left|\psi_{i n}\right\rangle=\left|x_{M}\right\rangle$.

$$
\hat{\phi}(z)=\frac{\left\langle x_{M}\right| \hat{U}(z)\left|x_{M}\right\rangle}{1+\left\langle x_{M}\right| \hat{U}(z)\left|x_{M}\right\rangle}=1-\frac{1}{1+\left\langle x_{M}\right| \hat{U}(z)\left|x_{M}\right\rangle}
$$

But
$1+\left\langle x_{M}\right| \hat{U}(z)\left|x_{M}\right\rangle=\sum_{n \geq 0} z^{n}\left\langle x_{M}\right| e^{-i H \tau n}\left|x_{M}\right\rangle=\sum_{n \geq 0} z^{n}\left\langle x_{M} \mid \psi_{f}(n \tau)\right\rangle \equiv\left\langle x_{M} \mid \psi_{f}\left(z ; x_{M}\right)\right\rangle$
and $\left|\psi_{f}\left(z ; x_{0}\right)\right\rangle$ is the generating function of the measurement-free state starting at x_{M} at $t=0$!

$$
\hat{\phi}(z)=1-\frac{1}{\left\langle x_{M} \mid \psi_{f}\left(z ; x_{M}\right)\right\rangle}
$$

Take home message

The measurement free state function, $\left|\psi_{f r e e}\right\rangle$, a.k.a wave function free of measurement, gives the amplitude of first detection event on a site.

Operationally: Solve the Schrödinger equation, find the generating function of measurement free state function, perform inverse z transform, and get the detection time statistics.

Some tricks

$$
\begin{gathered}
P_{d e t}=\sum_{n=1}^{\infty} F_{n}=\sum_{n=1}^{\infty}\left|\phi_{n}\right|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=1}^{\infty} \phi_{k} e^{i \theta k} \sum_{l=1}^{\infty} \phi_{l}^{*} e^{-i \theta l} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\hat{\phi}\left(e^{i \theta}\right)\right|^{2} d \theta \\
\langle n\rangle=\sum_{n=1}^{\infty} n F_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[\hat{\phi}\left(e^{i \theta}\right)\right]^{*}\left(-i \frac{\partial}{\partial \theta}\right) \hat{\phi}\left(e^{i \theta}\right) d \theta
\end{gathered}
$$

Constructive interference

Destructive interference

$$
P_{\mathrm{det}} \leq \frac{1}{2}
$$

Detection probability $P_{\text {det }}$

Eli Barkai, Bar-Ilan Univ.

Detection probability

- Start in an initial state

$$
\left|\psi_{i n}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|r_{i}\right\rangle+e^{i \delta}\left|r_{j}\right\rangle\right)
$$

- From quantum renewal equation detection amplitudes sum up

$$
\phi_{n}^{\psi_{i n} \rightarrow r_{d}}=\frac{1}{\sqrt{2}}\left(\phi_{n}^{r_{i} \rightarrow r_{d}}+e^{i \delta} \phi_{n}^{r_{j} \rightarrow r_{d}}\right)
$$

- If states $\left|r_{j}\right\rangle$ and $\left|r_{j}\right\rangle$ are equivalent with respect to detection. Then:

$$
F_{n}^{\psi_{i n} \rightarrow r_{d}}=(1+\cos \delta) F_{n}^{r_{i} \rightarrow r_{d}}
$$

- Since $\sum_{n=1}^{\infty} F_{n}^{\psi_{i n} \rightarrow r_{d}} \leq 1$ we have

$$
(1+\cos \delta) \sum_{n=1}^{\infty} F_{n}^{r_{i} \rightarrow r_{d}} \leq 1
$$

Choose $\delta=0$ so $P_{\text {det }}\left(r_{i} \rightarrow r_{d}\right) \leq \frac{1}{2}$.

- More generally, consider a graph with ν initial sites all equivalent with respect to the detection. We have

$$
P_{d e t}^{r_{i} \rightarrow r_{d}} \leq 1 / \nu
$$

- Quantum detection is less efficient if compared with classical random walks.

Exact value

Symmetry

- More generally $P_{\text {det }}=\sum_{l} \mid\left.\left\langle\right.$ bright $\left._{l} \mid \psi_{i n}\right\rangle\right|^{2}$ and after the classification of the bright states we find

$$
P_{d e t}=\sum_{l}^{\prime} \frac{\left|\sum_{m=1}^{g_{l}}\left\langle x_{M} \mid E_{l, m}\right\rangle\left\langle E_{l, m} \mid \psi_{i n}\right\rangle\right|^{2}}{\sum_{m=1}^{g_{l}}\left|\left\langle x_{M} \mid E_{l, m}\right\rangle\right|^{2}}
$$

- In the case of no degeneracy (removal of symmetry) detection is unity.
- Disorder is good for efficient search [Plenio - light harvesting systems].
- $P_{\text {det }}$ is τ independent.
- Valid beyond the stroboscopic protocol.

Thiel, Mualem, DK, EB (2019).

Hilbert space under repeated measurement

Dark and Bright

- A bright/dark state is detected with probability one/zero.
- The Hilbert space can be decomposed into bright and dark subspaces.
- For rapid measurement this is related to the Zeno effect.
- Dark states are related to degeneracy and hence to symmetry.
- For degenerate states: $|\psi\rangle=N\left(\left\langle x_{M} \mid E_{2}\right\rangle\left|E_{1}\right\rangle-\left\langle x_{M} \mid E_{1}\right\rangle\left|E_{2}\right\rangle\right)$ is dark.
- Also a non degenerate energy level can be dark if $\left\langle x_{M} \mid E_{3}\right\rangle=0$.
- Alan Turing, Sudarshan, Misra, Plenio, Facchi, Paasazio, Caruso, Krovi

Sketch- Dark Bright States

Start $|\psi\rangle=N\left(\left\langle x_{M} \mid E_{2}\right\rangle\left|E_{1}\right\rangle-\left\langle x_{M} \mid E_{1}\right\rangle\left|E_{2}\right\rangle\right)$.
Find other orthogonal dark states total $g_{l}-1$.
From here get the total detection probability $P_{\text {det }}$.

Uncertainty Relation

$$
\left.\Delta P \operatorname{Var}(H)_{M} \geq\left|\left\langle x_{M}\right|[H, D]\right| \psi_{i n}\right\rangle\left.\right|^{2}
$$

- ΔP is the deviation of the total detection probability from the initial probability of detection.

$$
\Delta P=P_{d e t}-\left|\left\langle\psi_{i n} \mid x_{M}\right\rangle\right|^{2} .
$$

- $\operatorname{Var}(H)_{M}$ is the variance of the energy in the detected state.
- $D=\left|x_{M}\right\rangle\left\langle x_{M}\right|$ is the measurement projector.
- On the RHS we connect the initial and final states.

Uncertainty

Exact value

Into the bright space

- Let $|\beta\rangle$ be a bright state. Then $f(H)|\beta\rangle$ is also bright.
- To see this use $\left\langle E^{D}\right| f(H)|\beta\rangle=0$.
- $\left|x_{M}\right\rangle, H\left|x_{M}\right\rangle \ldots H^{k}\left|x_{M}\right\rangle \ldots$ are bright and so are:

$$
\left|B_{1}\right\rangle=\left|x_{M}\right\rangle \text { and }\left|B_{2}\right\rangle=N\left(\left|x_{M}\right\rangle-\frac{H\left|x_{M}\right\rangle}{\left\langle x_{M}\right| H\left|x_{M}\right\rangle}\right) .
$$

- From normalization, you get the fluctuations of H in the detected state. Using

$$
P_{d e t} \geq\left|\left\langle B_{1} \mid \psi_{i n}\right\rangle\right|^{2}+\left|\left\langle B_{2} \mid \psi_{i n}\right\rangle\right|^{2}
$$

we get the uncertainty principle. Notice it is τ independent.

An $L=6$ Ring

Easy to compute $\hat{\phi}(z)$ for an $L=6$ ring with our hopping Hamiltonian.

- For example, for $x_{0}=x_{M}$:

$$
\hat{\phi}(z)=\frac{\Re\left[\frac{1}{z^{-1} e^{2 i \gamma \tau}-1}\right]+2 \Re\left[\frac{1}{z^{-1} e^{i \gamma \tau-1}}\right]}{3+\Re\left[\frac{1}{\overline{z^{-1} e^{2 i \gamma \tau}-1}}\right]+2 \Re\left[\frac{1}{z^{-1} e^{i \gamma \tau-1}}\right]}
$$

Going back to ϕ_{n} is a bit more complicated.

$\langle n\rangle$ an integer

- $\langle n\rangle$ is quantized! Grünbaum, velázquez, Werner Comm. Math. Phys. (2013).
- Var[n] diverges at the exceptional points.

Variance

Eli Barkai, Bar-Ilan Univ.

$L=6$ Ring: the averaged first detection attempt

For $x_{M}=0, x_{0}=\{1,2,4,5\}$:

- For all but some special sampling times the probability of being detected is $1 / 2$. Half dark states.

Ring of size L

- If $X_{m}=X_{0}$ the particle is detected with probability one.
- For the same initial condition and besides exceptional sampling times

$$
\langle n\rangle=\left\{\begin{array}{cl}
\frac{L+2}{2} & \mathrm{~L} \text { is even } \\
\frac{L+1}{2} & \mathrm{~L} \text { is Odd }
\end{array}\right.
$$

- Exceptional sampling times

$$
\Delta E \tau=2 \pi k
$$

$$
\Delta E=E_{i}-E_{j}>0
$$

Infinite Lattice in One Dimension $\gamma=1$

The computation of $\hat{\phi}(z)$ is easy. For example for $x_{0}=x_{M}=0$:

$$
\hat{\phi}(z)=1-\frac{1}{\sum_{n} z^{n} J_{0}(2 \tau n)}
$$

For large $n \gg X_{0} / \tau$,

$$
F_{n} \approx \frac{4 \tau r^{2}\left(X_{0}, \tau\right)}{\pi n^{3}} \cos ^{2}\left[2 \tau n-\beta\left(X_{0}, \tau\right)\right]
$$

- For $X_{0}=0, r=1, \beta=-\pi / 4$ independent of τ.
- For $X_{0} \gg 1$, or $\tau \ll 1$

$$
F_{n} \sim \frac{\left(X_{0}\right)^{2}}{\pi \tau} \frac{\cos ^{2}(2 n \tau-\pi / 4)}{n^{3}}
$$

- For Classical Diffusion $F_{n} \sim n^{-3 / 2}$.

Thiel, EB, Kessler PRL (2018)

Infinite Lattice

$$
\gamma \tau=0.8
$$

Filled Dots = Exact, Circles=Asymptotic

Critical Sampling the Infinite Lattice

- For $2 \gamma \tau \rightarrow \pi$ we have $F_{n} \sim n^{-3}$ while at critical sampling $F_{n} \sim n^{-3} / 4$.
- $\Delta E \tau=2 \pi$ and here $\Delta E=4 \gamma$ is the width of the energy band.

First Detection on a line

Thiel, EB, Kessler PRL (2018)

The incidence time

- The time the wave packet hits the detector for the first time

$$
n_{i n c} \tau=\frac{\Delta X}{v_{g}}
$$

Here $\Delta X=\left|X_{0}-X_{M}\right|, v_{g}=\max \left|E_{k}^{\prime}\right|=2\left(\gamma=1, E_{k}=2 \cos (k)\right)$

- For $n<N_{i n c}$ we have nearly zero probability of detection.
- More precisely, for small n, with $X_{M}=0$

$$
F_{n} \sim \frac{1}{2 \pi \Delta X}\left(\frac{e n \tau}{\Delta X}\right)^{2 \Delta X}
$$

Final Remarks

Studied First Detection Time for Stroboscopic measurements.
Yields a direct analog of classical renewal equation with the first detection amplitude playing the role of the first-return probability.
Classical = Random Walk Theory and Newtonian mechanics.
Deviations from the latter, are quantified with uncertainty principle. Resonance conditions yield discontinuities, divergences in the firstdetection statistics.
Even on small graphs detection probability is not unity (provided there is no disorder).
Dark states are classified and with them we get the detection probability.

Ref. Thanks

Friedman, Kessler, EB Quantum walks: the first detected passage time problem Phys. Rev. E. 95, 032141 (2017).
Thiel, EB, and Kessler First detected arrival of a quantum walker on an infinite line Phys. Rev. Lett. 120, 040502 (2018).
Thiel, Mualem, Kessler EB Uncertainty and symmetry bounds for the total detection probability of quantum walks arXiv:1906.08108 [quant-ph]
Ruoyu Yin, Ziegler, Thiel, EB Large fluctuations of the quantum first return time arXiv:1903.03394 [cond-mat.stat-mech]

How you track matters

So far the measurements were local, yielding a string no,no, ...yes.
Consider a graph and a stroboscopic measurement of X, this yields the string $1,42,32,15, \ldots .0$ and we stop when the node 0 is visited for first time.
Also here $\langle n\rangle$ is quantized, but it is not the same as the local detection protocol (work with Avihai Didi).
That is for the next talk.

Classical picture: Grunbaum et al. Charge Theory

Charge magnitude: $p_{k}=\mid\left.\left\langle E_{k}\right| \psi_{i n}\right|^{2}$. Location: $\exp \left(i E_{k} \tau\right)$.
Goal: Find the zeros z_{i} of the force field.
$\#$ of charges $=\langle n\rangle$.
Large fluctuations of n when $\left|z_{i}\right| \rightarrow 1$. Only for return problem: a LOOP..
Algebra: $V(z)=\sum_{k} p_{k} \ln \left|e^{i E_{k} \tau}-z\right|$ and $\hat{\phi}(z)=z \prod_{i=1}^{\omega-1} \frac{z-z_{i}}{z_{i}^{*} z-1}$.

Single Charge Theory

$$
z_{s}=1-\frac{p_{0}}{\sum_{j \neq 0} p_{j} /\left[1-\exp \left(i E_{j} \tau\right)\right]} \quad \text { and } \operatorname{Var}(n) \sim \frac{2\left|z_{s}\right|^{2}}{1-\left|z_{s}\right|^{2}}
$$

Electrostatics: if one of the charges is weak we have a zero close to the unit circle. QM: if $p_{k}=\mid\left.\left\langle E_{k}\right| \psi_{i n}\right|^{2} \ll 1$ there is a component of the wave function that is difficult to detect, and this gives large quantum fluctuations.

Two charge theory

$$
z_{p} \sim 1+i \frac{p_{1}-p_{2}}{p_{1}+p_{2}} \delta+\left[\frac{4 p_{1} p_{2}}{\left(p_{1}+p_{2}\right)^{3}} \sum_{j \neq 1,2} \frac{p_{j}}{\exp \left(i E_{j} \tau\right)-1}-\frac{1}{2}\right] \delta^{2}
$$

$\operatorname{Var}(n) \sim \frac{2\left|z_{p}\right|^{2}}{1-\left|z_{p}\right|^{2}}=2 \frac{\left(p_{1}+p_{2}\right)^{3}}{p_{1} p_{2} \delta^{2}}$ is independent of the background

Three charge theory

$$
\text { But why care? } \operatorname{Var}(n) \sim \sum_{\sigma= \pm} \frac{2\left|z_{d}^{\sigma}\right|^{2}}{1-\left|z_{d}^{\sigma}\right|^{2}}+\underbrace{\left(\frac{2 z_{d}^{+}\left(z_{d}^{-}\right)^{*}}{1-z_{d}^{+}\left(z_{d}^{-}\right)^{*}}+c . c\right)}_{\text {Mixed }}
$$

Charge configuration Zeno limit $\tau \rightarrow 0$

Ruoyu Yin, Ziegler, EB (in preparation)

Ring $L=8,\langle n\rangle=5$

Eli Barkai, Bar-Ilan Univ.

Zeno Limit

Eli Barkai, Bar-Ilan Univ.

Winding number for the return problem

- The generating function $\hat{\phi}(z)=\sum_{n=1}^{\infty} z^{n} \phi_{n}$.
- From the quantum renewal equation $\hat{\phi}(z)=\frac{\left\langle\psi_{i n}\right| \hat{U}(z)\left|\psi_{i n}\right\rangle}{1+\left\langle\psi_{i n}\right| \hat{U}(z)\left|\psi_{i n}\right\rangle}$ with $\hat{U}(z)=\sum_{n=1}^{\infty} z^{n} \exp (-i H \tau n)$.
- Decompose in an energy basis: $\left|\psi_{i n}\right\rangle=\sum_{k}\left\langle E_{k} \mid \psi_{i n}\right\rangle\left|E_{k}\right\rangle$.
- Use $\exp (-i H n \tau)\left|E_{k}\right\rangle=\exp \left(-i E_{k} n \tau\right)\left|E_{k}\right\rangle$, sum a geometric series and use normalization $\sum_{k} p_{k}=1$ here p_{k} is the probability of finding the initial condition in energy state k

$$
\hat{\phi}(z)=\frac{\sum_{k} \frac{z p_{k} e^{-i E_{k} \tau}}{1-z e^{-i E_{k} \tau}}}{\sum_{k} \frac{p_{k}}{1-z e^{-i E_{k} \tau}}}
$$

- Rearrange, use $1 /[\exp (i x)-1]=[-1-i \cot (x / 2)] / 2$ and consider $z=\exp (i \theta)$, i.e. we are on the unit circle

$$
\hat{\phi}\left(e^{i \theta}\right)=\exp [i f(\theta)]
$$

where

$$
f(\theta)=2 \operatorname{ArcTan}\left[\sum_{k} p_{k} \cot \frac{E_{k} \tau-\theta}{2}\right] .
$$

- From here: eventually the process is detected (for discrete spectrum, and return problem) and this follows from $\mid \exp [i f(\theta) \mid=1$.
- The average of n is an integer equal to the winding number.
- More specifically $\langle n\rangle$ is the number of distinct energy levels with $p_{k} \neq 0$ unless $\Delta E \tau=2 \pi j$.

Winding up the generating function. RETURN problem.

Plot $\hat{\phi}(z)$ where $z=\exp (i \theta)$ and $-\pi<\theta<\pi$ Grünbaum et al. (2013).
Simple model of Y structure, number of distinct energy levels 3, but one energy state is orthogonal to the detected site, so effective dimension of the Hilbert space is 2. Here we consider the return to center of structure.

Topology modified at specific sampling times

When $\Delta E \tau=2 \pi$, winding number exhibits a discontinuity $\langle n\rangle=2 \rightarrow 1$.

Generating function - basic formalism

$$
\begin{gather*}
\phi_{n}=\left.\frac{1}{n!} \frac{d^{n}}{d z^{n}} \hat{\phi}(z)\right|_{z=0} \tag{1}\\
\text { or } \\
\phi_{n}=\frac{1}{2 \pi i} \oint_{C} \hat{\phi}(z) z^{-n-1} d z \tag{2}
\end{gather*}
$$

Probability of being detected:

$$
\begin{gather*}
1-S_{\infty}=\sum_{n=1}^{\infty} F_{n}=\sum_{n=1}^{\infty}\left|\phi_{n}\right|^{2}= \\
\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=1}^{\infty} \phi_{k} e^{i \theta k} \sum_{l=1}^{\infty} \phi_{l}^{*} e^{-i \theta l} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\hat{\phi}\left(e^{i \theta}\right)\right|^{2} d \theta \tag{3}\\
\langle n\rangle=\sum_{n=1}^{\infty} n F_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[\hat{\phi}\left(e^{i \theta}\right)\right]^{*}\left(-i \frac{\partial}{\partial \theta}\right) \hat{\phi}\left(e^{i \theta}\right) d \theta \tag{4}
\end{gather*}
$$

A shorthand notation is $\langle n\rangle=\langle\hat{\phi}|-i \partial_{\theta}|\hat{\phi}\rangle$.

First Detection theory

Total Detection

Total Detection

Prefactor Abs

Prefactor Abs

Why do we find dark states?

Eli Barkai, Bar-Ilan Univ.

two boson model

Eli Barkai, Bar-Ilan Univ.

two boson model

Eli Barkai, Bar-Ilan Univ

Eli Barkai, Bar-Ilan Univ.

Eli Barkai, Bar-Ilan Univ.

Two charge theory

Eli Barkai, Bar-Ilan Univ.

Ring

Eli Barkai, Bar-Ilan Univ.

Connection to Classical Renewal Formula

Schrödinger in 1915 formulated the "renewal formula" for the first passage problem, relating the first passage probability $F(x, t)$ with the absorption-free probability distribution $P\left(x, t ; x_{0}\right)$ for a random walker released at $x=x_{0}$ at time 0 :

$$
P\left(x, t ; x_{0}\right)=\delta_{x, x_{0}} \delta_{t, 0}+\sum_{t^{\prime} \leq t} F\left(x, t^{\prime}\right) P\left(x, t-t^{\prime} ; x\right)
$$

Taking a z-transform of this equation yields a solution for F in terms of the absorption-free propagator P :

$$
P(x, z)=\delta_{x, x_{0}}+F(x, z) P(0, z) \Rightarrow F(x, z)= \begin{cases}\frac{P\left(x, z ; x_{0}\right)}{P\left(x_{0}, z ; x_{0}\right)} ; & x \neq x_{0} \\ 1-\frac{1}{P\left(x_{0}, z ; x_{0}\right)} ; & x=x_{0}\end{cases}
$$

The parallel with our formula is clear

$$
\hat{\phi}(z)=\left\{\left\langle x_{M} \mid \psi\left(z ; x_{0}\right)\right\rangle /\left\langle x_{M} \mid \psi\left(z ; x_{M}\right)\right\rangle ; 1-1 /\left\langle x_{0}\right| \psi_{f}\left(z ; x_{0}\right)\right\} .
$$

Marrying Schrödinger’s Two Great Works!

Detection probability $P_{\text {det }}=\sum_{n>0} F_{n}$

Unlike classical random walks in $1 d$ probability of detecting the particle is not unity

The Quantum Zeno Effect

- If $x_{0} \neq x_{M} \lim _{\tau \rightarrow 0} F_{n}=0$. The particle is not detected.
- Since the measurement zeroes the wave function at x_{M}, if we measure too often, the particle will never get to x_{M}.
- "A watched quantum pot never boils"
- Mathematically it is easy to show:

$$
\lim _{\tau \rightarrow 0} \hat{\phi}(z)=z\left\langle X_{M} \mid \psi_{i n}\right\rangle
$$

Eli Barkai, Bar-Ilan Univ.

Eli Barkai, Bar-Ilan Univ.

