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Outline

Consider unitary evolution pierced by repeated measurements.

The quantum version of the first passage time (Smoluchowski).

Quantum renewal equation.

Interference sub-spaces: the dark and bright.

Uncertainty principle and symmetry bounds.

Quantization of the return time, and more.
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Quantum Walks, U = exp(−iHτ)
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Measurement protocol

Quantum computing: is the quantum search superior to the
classical random walk? How to choose τ? optimal sampling?

Ambainis et al (2001), Krovi and Brun (2008), Grunbaum et al (2013) [X0 = XM ]
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First Detection Time: Definition

So, we consider a single quantum particle evolving under a Hermitian
Hamiltonian H.
Every τ seconds, we make a measurement asking whether or not the
particle is detected at xM.
If yes, the game stops, and this gives the detection time.
If no, life goes on and τ seconds later we measure again.....
We get the string (no, no, ... yes) and in the n-th entry a yes.
nτ is the random first detection event.
What is the distribution of n? Can we find 〈n〉?
will we detect the particle?
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What is non-trivial is that the measurement process "collapses" the
wave-function, setting ψ(xM) = 0.

• The rest of the wave-function is unchanged, except for normalization

• In operator language, we "project out" the xM component of the state.
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Classical First Passage

Particles arriving at x at time t, first arrived at x some earlier time
t− t′ and returned there after t′ additional steps.
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Quantum Renewal Equation

• φn amplitude of first detection probability (Dhar).

• Fn = |φn|2 Prob. of first detection in the n-th attempt.

• Pdet =
∑

n=1 Fn can be less than one even on finite graphs.

〈xM |U(nτ)|ψin〉 =
∑n

j=1〈xM |U [(n− j) τ ] |xM〉φj
• For example: φ1 = 〈xM |U(τ)|ψin〉

φ2 = 〈xM |U (1− |xM〉〈xM |)U |ψin〉.

Friedmann, DK, EB PRE (2017)
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Generating Function for φn

Generating Function:
φ̂(z) ≡

∑

n>0

znφn

A single site initial condition |ψin〉 = |xM〉.

φ̂(z) =
〈xM |Û(z)|xM〉

1 + 〈xM |Û(z)|xM〉
= 1− 1

1 + 〈xM |Û(z)|xM〉

But

1+〈xM |Û(z)|xM〉 =
∑

n≥0

zn〈xM |e−iHτn|xM〉 =
∑

n≥0

zn〈xM |ψf(nτ)〉 ≡ 〈xM |ψf(z;xM)〉

and |ψf(z;x0)〉 is the generating function of the measurement-free
state starting at xM at t = 0!

φ̂(z) = 1− 1

〈xM |ψf(z;xM)〉
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Take home message

The measurement free state function, |ψfree〉, a.k.a wave function free of measurement,
gives the amplitude of first detection event on a site.

Operationally: Solve the Schrödinger equation, find the generating function of
measurement free state function, perform inverse z transform, and get the detection
time statistics.

Some tricks

Pdet =

∞∑
n=1

Fn =

∞∑
n=1

|φn|2 =
1

2π

∫ 2π

0

∞∑
k=1

φke
iθk

∞∑
l=1

φ
∗
l e
−iθl

dθ =
1

2π

∫ 2π

0

|φ̂(e
iθ

)|2dθ.

〈n〉 =

∞∑
n=1

nFn =
1

2π

∫ 2π

0

[
φ̂
(
e
iθ
)]∗(

−i ∂
∂θ

)
φ̂(e

iθ
)dθ.

Friedmann, DK, EB PRE (2017)
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Constructive interference

Destructive interference
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Detection probability Pdet

Eli Barkai, Bar-Ilan Univ.



Detection probability

• Start in an initial state

|ψin〉 =
1√
2

(
|ri〉+ e

iδ|rj〉
)

• From quantum renewal equation detection amplitudes sum up

φ
ψin→rd
n =

1√
2

(
φ
ri→rd
n + e

iδ
φ
rj→rd
n

)
.

• If states |rj〉 and |rj〉 are equivalent with respect to detection. Then:

F
ψin→rd
n = (1 + cos δ)F

ri→rd
n

• Since
∑∞

n=1 F
ψin→rd
n ≤ 1 we have

(1 + cos δ)

∞∑
n=1

F
ri→rd
n ≤ 1.

Choose δ = 0 so Pdet (ri → rd) ≤ 1
2.
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• More generally, consider a graph with ν initial sites all equivalent with respect
to the detection. We have

P
ri→rd
det ≤ 1/ν

• Quantum detection is less efficient if compared with classical random walks.

Exact value Symmetry
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• More generally Pdet =
∑

l |〈brightl|ψin〉|2 and after the classification of the
bright states we find

Pdet =
∑′

l

|∑gl
m=1〈xM |El,m〉〈El,m|ψin〉|2∑gl

m=1 |〈xM |El,m〉|2
.

• In the case of no degeneracy (removal of symmetry) detection is unity.
• Disorder is good for efficient search [Plenio - light harvesting systems].
• Pdet is τ independent.
• Valid beyond the stroboscopic protocol.

Thiel, Mualem, DK, EB (2019).
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Hilbert space under repeated measurement

        Zeno                   Interference

τ = 0τ → 0
    no symmetry                          symmetry

B D
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Dark and Bright

• A bright/dark state is detected with probability one/zero.

• The Hilbert space can be decomposed into bright and dark subspaces.

• For rapid measurement this is related to the Zeno effect.

• Dark states are related to degeneracy and hence to symmetry.

• For degenerate states: |ψ〉 = N (〈xM |E2〉|E1〉 − 〈xM |E1〉|E2〉) is dark.

• Also a non degenerate energy level can be dark if 〈xM |E3〉 = 0.

• Alan Turing, Sudarshan, Misra, Plenio, Facchi, Paasazio, Caruso, Krovi ....
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Sketch- Dark Bright States

E

# Brightg
l # Dark

 1            1                       0 1            1                       0

 5            1                       4

 8            1                       7

 7            1                       6

 1            1                       0

Start |ψ〉 = N (〈xM |E2〉|E1〉 − 〈xM |E1〉|E2〉).
Find other orthogonal dark states total gl − 1.
From here get the total detection probability Pdet.
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Uncertainty Relation

∆PVar(H)M ≥ |〈xM | [H,D] |ψin〉|2

• ∆P is the deviation of the total detection probability from the initial
probability of detection.

∆P = Pdet − |〈ψin|xM〉|2.

• Var(H)M is the variance of the energy in the detected state.

• D = |xM〉〈xM | is the measurement projector.

• On the RHS we connect the initial and final states.
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Uncertainty Exact value
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Into the bright space

• Let |β〉 be a bright state. Then f(H)|β〉 is also bright.

• To see this use 〈ED|f(H)|β〉 = 0.

• |xM〉, H|xM〉....Hk|xM〉... are bright and so are:

|B1〉 = |xM〉 and |B2〉 = N

(
|xM〉 −

H|xM〉
〈xM |H|xM〉

)
.

• From normalization, you get the fluctuations of H in the detected state.
Using

Pdet ≥ |〈B1|ψin〉|2 + |〈B2|ψin〉|2

we get the uncertainty principle. Notice it is τ independent.
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An L = 6 Ring

Easy to compute φ̂(z) for an L = 6 ring with our hopping Hamiltonian.
• For example, for x0 = xM:

φ̂(z) =
<
[

1

z−1e2iγτ−1

]
+ 2<

[
1

z−1eiγτ−1

]
3 + <

[
1

z−1e2iγτ−1

]
+ 2<

[
1

z−1eiγτ−1

]
Going back to φn is a bit more complicated.

|�2i |�1i |0i |1i |2i

|0i

|1i |2i

|3i

|4i|5i
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〈n〉 an integer

xM = 0; x0 = 0

• 〈n〉 is quantized! Grünbaum, Velázquez, Werner Comm. Math. Phys. (2013).

• Var[n] diverges at the exceptional points.
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Variance
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L = 6 Ring: the averaged first detection attempt

xM = 0; x0 = 3

0 1 2 3 4 5 6
γτ

5

10

15

20
〈n〉

For xM = 0, x0 = {1, 2, 4, 5}:
• For all but some special sampling times the probability of being detected is

1/2. Half dark states.
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Ring of size L

• If Xm = X0 the particle is detected with probability one.

• For the same initial condition and besides exceptional sampling times

〈n〉 =


L+2

2 L is even

L+1
2 L is Odd

• Exceptional sampling times

∆Eτ = 2πk
∆E = Ei − Ej > 0
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Infinite Lattice in One Dimension γ = 1

The computation of φ̂(z) is easy. For example for x0 = xM = 0:

φ̂(z) = 1− 1∑
n z

nJ0(2τn)

For large n >> X0/τ,

Fn ≈ 4τr2(X0,τ)

πn3 cos2 [2τn− β(X0, τ)]

• For X0 = 0, r = 1, β = −π/4 independent of τ .

• For X0 >> 1, or τ << 1

Fn ∼ (X0)2

πτ
cos2(2nτ−π/4)

n3 .

• For Classical Diffusion Fn ∼ n−3/2.
Thiel, EB, Kessler PRL (2018)
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Infinite Lattice

γτ = 0.8

1 10 100
n

10-8

10-6

10-4

10-2

100
F n

Filled Dots = Exact, Circles=Asymptotic
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Critical Sampling the Infinite Lattice

2γτ = π

14

1 2 5 10 20 50 100 200
n

10-6

10-4

0.01

Fn

FIG. 5: First detection probability Fn versus n on a log log
plot, for an open system, detection is at the starting point
and the sampling rate is �⌧ = ⇡/2. For large n the exact
result (dots) converges to the asymptotic power law behavior
Eq. (88), Fn = |�n|2 ⇠ 0.25n�3 (straight line).

When n ! 1 clearly the small y limit of the integration dominates. Close to the singularity at z = 1 [39]

Li1/2(z) '
r

⇡

1 � z
+ ⇣(1/2) + · · · (81)

where ⇣(.) is the Riemann zeta function. Indeed to obtain the leading term (which will eventually give the large n
limit of �n) we replace the summation with integration in the definition of the Polylog function Li1/2(z) using

1X

k=1

zk

p
k
'
Z 1

0

dkp
k

ek ln(z) =
p
⇡ [� ln(z)]

�1/2 '
r

⇡

1 � z
(82)

where z < 1. We use z = 1 + y ± i✏, where the choice of sign depends on the path evaluated, namely I±. In the limit
of small y, corresponding to large n, we find using Eq. (81)

Li1/2 (1 + y ± i✏) '
r

⇡

�y ⌥ i✏
⇠
r

⇡

ye⌥i⇡
= ±i

r
⇡

y
. (83)

With ln(�1 � y + i✏) = ln(1 + y) + i⇡ when ✏! 0

I+ =

Z 1

0

exp {�(1 + n) [ln(1 + y) + i⇡]} �i
p
⇡/y

⇡ � i
p
⇡/y

dy. (84)

Clearly exp[�(1 + n)i⇡] = (�1)n+1, and approximating (1 + n) ln(1 + y) ⇠ ny in the exponential in the integrand in
Eq. (84), an approximation valid in the limit of large n since then only small y contributes to the integration, and

finally Taylor expanding �i
p
⇡/y/[⇡ � i

p
⇡/y] ⇠ 1 � i

p
⇡y we find

I+ ⇠ (�1)n+1

Z 1

0

exp(�ny) (1 � i
p
⇡y + · · · ) dy. (85)

The integral yields

I+ ⇠ (�1)n+1

✓
1

n
� i

⇡

2n3/2
+ · · ·

◆
. (86)

The calculation of I� follows the same steps

I� ⇠ (�1)n+1

✓
� 1

n
� i

⇡

2n3/2

◆
(87)

Finally using Eq. (78)

�n ⇠ (�1)n

2n3/2
. (88)

• For 2γτ → π we have Fn ∼ n−3 while at critical sampling Fn ∼ n−3/4.

• ∆Eτ = 2π and here ∆E = 4γ is the width of the energy band.
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First Detection on a line
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Thiel, EB, Kessler PRL (2018)
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The incidence time

• The time the wave packet hits the detector for the first time

nincτ =
∆X

vg
.

Here ∆X = |X0 −XM |, vg = max|E′k| = 2 (γ = 1, Ek = 2 cos(k))

• For n < Ninc we have nearly zero probability of detection.

• More precisely, for small n, with XM = 0

Fn ∼
1

2π∆X

(
enτ

∆X

)2∆X
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Final Remarks

Studied First Detection Time for Stroboscopic measurements.
Yields a direct analog of classical renewal equation with the first
detection amplitude playing the role of the first-return probability.
Classical = Random Walk Theory and Newtonian mechanics.
Deviations from the latter, are quantified with uncertainty principle.
Resonance conditions yield discontinuities, divergences in the first-
detection statistics.
Even on small graphs detection probability is not unity (provided
there is no disorder).
Dark states are classified and with them we get the detection
probability.
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How you track matters

So far the measurements were local, yielding a string no, no, ...yes.
Consider a graph and a stroboscopic measurement of X, this yields
the string 1, 42, 32, 15, ....0 and we stop when the node 0 is visited for
first time.
Also here 〈n〉 is quantized, but it is not the same as the local
detection protocol (work with Avihai Didi).
That is for the next talk.
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Classical picture: Grunbaum et al. Charge Theory

Charge magnitude: pk = |〈Ek|ψin|2. Location: exp(iEkτ).
Goal: Find the zeros zi of the force field.
# of charges = 〈n〉.
Large fluctuations of n when |zi| → 1. Only for return problem: a LOOP..
Algebra: V (z) =

∑
k pk ln |eiEkτ − z| and φ̂(z) = zΠω−1

i=1
z−zi
z∗
i
z−1

.
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Single Charge Theory

zs = 1− p0∑
j 6=0 pj/[1−exp(iEjτ)] and Var(n) ∼ 2|zs|2

1−|zs|2.

Electrostatics: if one of the charges is weak we have a zero close to the unit circle.

QM: if pk = |〈Ek|ψin|2 << 1 there is a component of the wave function that is difficult
to detect, and this gives large quantum fluctuations.
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Two charge theory

zp ∼ 1 + i
p1−p2
p1+p2

δ +

[
4p1p2

(p1+p2)3

∑
j 6=1,2

pj
exp(iEjτ)−1 − 1

2

]
δ2

Var(n) ∼ 2|zp|2
1−|zp|2

= 2
(p1+p2)3

p1p2δ
2 is independent of the background.
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Three charge theory

But why care? Var(n) ∼∑σ=±
2|zσd |

2

1−|zσ
d
|2 +

(
2z+

d (z−d )∗

1− z+
d (z−d )∗

+ c.c

)
︸ ︷︷ ︸

Mixed
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Charge configuration Zeno limit τ → 0

# of charges is number of distinct energy levels.

Ruoyu Yin, Ziegler, EB (in preparation)
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Ring L = 8, 〈n〉 = 5

5

2

2X2
2

3 2X2

2X2

3

32

Eli Barkai, Bar-Ilan Univ.



Zeno Limit
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Winding number for the return problem

• The generating function φ̂(z) =
∑∞

n=1 z
nφn.

• From the quantum renewal equation φ̂(z) =
〈ψin|Û(z)|ψin〉

1+〈ψin|Û(z)|ψin〉
with

Û(z) =
∑∞

n=1 z
n exp(−iHτn).

• Decompose in an energy basis: |ψin〉 =
∑

k〈Ek|ψin〉|Ek〉.
• Use exp(−iHnτ)|Ek〉 = exp(−iEknτ)|Ek〉, sum a geometric series and use

normalization
∑

k pk = 1 here pk is the probability of finding the initial
condition in energy state k

φ̂(z) =

∑
k
zpke

−iEkτ

1−ze−iEkτ∑
k

pk

1−ze−iEkτ
.

• Rearrange, use 1/[exp(ix)−1] = [−1− icot(x/2)]/2 and consider z = exp(iθ),
i.e. we are on the unit circle

φ̂
(
e
iθ
)

= exp [if(θ)]

where

f(θ) = 2ArcTan

[∑
k

pk cot
Ekτ − θ

2

]
.

Eli Barkai, Bar-Ilan Univ.



• From here: eventually the process is detected (for discrete spectrum, and
return problem) and this follows from | exp[if(θ)| = 1.

• The average of n is an integer equal to the winding number.

• More specifically 〈n〉 is the number of distinct energy levels with pk 6= 0
unless ∆Eτ = 2πj.

Eli Barkai, Bar-Ilan Univ.



Winding up the generating function. RETURN problem.

-1

 0
 

 
 1

-1
 0     1

-3

 0
 
 

 3
 

Plot φ̂(z) where z = exp(iθ) and −π < θ < π Grünbaum et al. (2013).

Simple model of Y structure, number of distinct energy levels 3, but one energy state
is orthogonal to the detected site, so effective dimension of the Hilbert space is 2.
Here we consider the return to center of structure.
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Topology modified at specific sampling times
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When ∆Eτ = 2π, winding number exhibits a discontinuity 〈n〉 = 2→ 1.

Eli Barkai, Bar-Ilan Univ.



Generating function - basic formalism

φn =
1

n!

dn

dzn
φ̂(z)|z=0 (1)

or

φn =
1

2πi

∮
C

φ̂(z)z
−n−1

dz (2)

Probability of being detected:

1− S∞ =

∞∑
n=1

Fn =

∞∑
n=1

|φn|2 =

1

2π

∫ 2π

0

∞∑
k=1

φke
iθk

∞∑
l=1

φ
∗
l e
−iθl

dθ =
1

2π

∫ 2π

0

|φ̂(e
iθ

)|2dθ. (3)

Similarly

〈n〉 =
∞∑
n=1

nFn =
1

2π

∫ 2π

0

[
φ̂
(
e
iθ
)]∗(

−i ∂
∂θ

)
φ̂(e

iθ
)dθ. (4)
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A shorthand notation is 〈n〉 = 〈φ̂| − i∂θ|φ̂〉.
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First Detection theory
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Total Detection
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Total Detection
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Prefactor Abs
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Prefactor Abs
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Why do we find dark states?
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Two charge theory
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Connection to Classical Renewal Formula

Schrödinger in 1915 formulated the "renewal formula" for the first
passage problem, relating the first passage probability F (x, t) with the
absorption-free probability distribution P (x, t;x0) for a random walker
released at x = x0 at time 0:

P (x, t;x0) = δx,x0δt,0 +
∑

t′≤t
F (x, t′)P (x, t− t′;x)

Taking a z-transform of this equation yields a solution for F in terms
of the absorption-free propagator P :

P (x, z) = δx,x0 + F (x, z)P (0, z)⇒ F (x, z) =





P (x,z;x0)
P (x0,z;x0)

; x 6= x0

1− 1
P (x0,z;x0)

; x = x0

The parallel with our formula is clear

φ̂(z) =
{
〈xM |ψ(z;x0)〉/〈xM |ψ(z;xM)〉; 1− 1/〈x0|ψf(z;x0)

}
.

Marrying Schrödinger’s Two Great Works!

Eli Barkai, Bar-Ilan Univ.



Detection probability Pdet =
∑
n>0Fn

Unlike classical random walks in 1d probability of detecting the particle is not unity

Eli Barkai, Bar-Ilan Univ.



The Quantum Zeno Effect

• If x0 6= xM limτ→0 Fn = 0. The particle is not detected.

• Since the measurement zeroes the wave function at xM, if we measure too
often, the particle will never get to xM.

• "A watched quantum pot never boils"

• Mathematically it is easy to show:

lim
τ→0

φ̂(z) = z〈XM |ψin〉.

Eli Barkai, Bar-Ilan Univ.
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