NaMeS

32nd Marian Smoluchowski Symposium on Statistical Physics
Cross-diffusion in concentrated reactive systems revealed by perturbation of FKPP wave front.

Gabriel Morgado ${ }^{1,2}$, Bogdan Nowakowski ${ }^{1}$, Annie Lemarchand ${ }^{2}$

1. Institute of Physical Chemistry, Polish Academy of Sciences
2. Laboratoire de Physique Théorique de la Matiere Condensee, Sorbonne Université

September 19th, 2019

Fisher-KPP equation:

$$
\partial_{t} u=\partial_{x}^{2} u+r u(1-u)
$$

with $u(x, t)$ and a parameter r

Fisher-KPP equation:

$$
\partial_{t} u=\partial_{x}^{2} u+r u(1-u)
$$

with $u(x, t)$ and a parameter r
Belongs to the class of reaction-diffusion equations

Fisher-KPP equation:

$$
\partial_{t} u=\partial_{x}^{2} u+r u(1-u)
$$

with $u(x, t)$ and a parameter r
Belongs to the class of reaction-diffusion equations Admits two equilibrium states $u=0$ and $u=1$

Fisher-KPP equation:

$$
\partial_{t} u=\partial_{x}^{2} u+r u(1-u)
$$

with $u(x, t)$ and a parameter r
Belongs to the class of reaction-diffusion equations
Admits two equilibrium states $u=0$ and $u=1$
Existence of a travelling wave between the two states

We consider the following autocatalytic reaction, in solvent S:

$$
\mathrm{A}+\mathrm{B} \xrightarrow{k} 2 \mathrm{~A}
$$

We consider the following autocatalytic reaction, in solvent S:

$$
\mathrm{A}+\mathrm{B} \xrightarrow{k} 2 \mathrm{~A}
$$

The reaction-diffusion equations are given by:

$$
\begin{aligned}
\partial_{t} A & =D_{A} \partial_{x}^{2} A+k A B \\
\partial_{t} B & =D_{B} \partial_{x}^{2} B-k A B
\end{aligned}
$$

where $A(x, t)$ and $B(x, t)$ are the concentrations of \mathbf{A} and \mathbf{B}, D_{A} and D_{B} are diffusion coefficients and k is the kinetic constant

We consider the following autocatalytic reaction, in solvent S:

$$
\mathrm{A}+\mathrm{B} \xrightarrow{k} 2 \mathrm{~A}
$$

The reaction-diffusion equations are given by:

$$
\begin{aligned}
\partial_{t} A & =D_{A} \partial_{x}^{2} A+k A B \\
\partial_{t} B & =D_{B} \partial_{x}^{2} B-k A B
\end{aligned}
$$

where $A(x, t)$ and $B(x, t)$ are the concentrations of \mathbf{A} and \mathbf{B}, D_{A} and D_{B} are diffusion coefficients and k is the kinetic constant

> When $D_{A}=D_{B}$, the RD equation of $A(x, t)$ is a Fisher-KPP equation.

NaMeS

In a concentrated system, diffusion is perturbed:

$$
\begin{aligned}
& \partial_{t} A=D_{A} \partial_{x}\left[\left(1-\frac{A}{C}\right) \partial_{x} A\right]-D_{B} \partial_{x}\left(\frac{A}{C} \partial_{x} B\right)+k A B \\
& \partial_{t} B=D_{B} \partial_{x}\left[\left(1-\frac{B}{C}\right) \partial_{x} B\right]-D_{A} \partial_{x}\left(\frac{B}{C} \partial_{x} A\right)-k A B
\end{aligned}
$$

where $C=A+B+S=$ constant

NaMeS

In a concentrated system, diffusion is perturbed:

$$
\begin{aligned}
& \partial_{t} A=D_{A} \partial_{x}\left[\left(1-\frac{A}{C}\right) \partial_{x} A\right]-D_{B} \partial_{x}\left(\frac{A}{C} \partial_{x} B\right)+k A B \\
& \partial_{t} B=D_{B} \partial_{x}\left[\left(1-\frac{B}{C}\right) \partial_{x} B\right]-D_{A} \partial_{x}\left(\frac{B}{C} \partial_{x} A\right)-k A B
\end{aligned}
$$

where $C=A+B+S=$ constant

Questions

- How does $D_{A} \neq D_{B}$ affect the velocity and shape of the wave front ?

NaMeS

In a concentrated system, diffusion is perturbed:

$$
\begin{aligned}
& \partial_{t} A=D_{A} \partial_{x}\left[\left(1-\frac{A}{C}\right) \partial_{x} A\right]-D_{B} \partial_{x}\left(\frac{A}{C} \partial_{x} B\right)+k A B \\
& \partial_{t} B=D_{B} \partial_{x}\left[\left(1-\frac{B}{C}\right) \partial_{x} B\right]-D_{A} \partial_{x}\left(\frac{B}{C} \partial_{x} A\right)-k A B
\end{aligned}
$$

where $C=A+B+S=$ constant

Questions

- How does $D_{A} \neq D_{B}$ affect the velocity and shape of the wave front ?
- How does confinement (i.e. $S \rightarrow 0$) affect the velocity and shape of the wave front?

NaMeS

In a concentrated system, diffusion is perturbed:

$$
\begin{aligned}
& \partial_{t} A=D_{A} \partial_{x}\left[\left(1-\frac{A}{C}\right) \partial_{x} A\right]-D_{B} \partial_{x}\left(\frac{A}{C} \partial_{x} B\right)+k A B \\
& \partial_{t} B=D_{B} \partial_{x}\left[\left(1-\frac{B}{C}\right) \partial_{x} B\right]-D_{A} \partial_{x}\left(\frac{B}{C} \partial_{x} A\right)-k A B
\end{aligned}
$$

where $C=A+B+S=$ constant

Questions

- How does $D_{A} \neq D_{B}$ affect the velocity and shape of the wave front ?
- How does confinement (i.e. $S \rightarrow 0$) affect the velocity and shape of the wave front?
- Can we use these effects to detect perturbed diffusion in a concentrated Fisher-KPP front ?

Velocity v of a Fisher front

Velocity v of a Fisher front Independent of D_{B} and S

Shape of the front, 2 parameters:

Shape of the front, 2 parameters:

- Height defined as the difference of concentration between

$$
A\left(x_{0}\right) \text { and } B\left(x_{0}\right) \text { where } A\left(x_{0}\right)=\frac{V_{0}}{2}
$$

Shape of the front, 2 parameters:

- Height defined as the difference of concentration between $A\left(x_{0}\right)$ and $B\left(x_{0}\right)$ where $A\left(x_{0}\right)=\frac{V_{0}}{2}$
- Width of the front defined as the inverse of the slope of the A profile where $A\left(x_{0}\right)=\frac{V_{0}}{2}$

Shape of the front, 2 parameters:

- Height defined as the difference of concentration between
$A\left(x_{0}\right)$ and $B\left(x_{0}\right)$ where $A\left(x_{0}\right)=\frac{V_{0}}{2} \Rightarrow h=B\left(x_{0}\right)-\frac{V_{0}}{2}$
- Width of the front defined as the inverse of the slope of the A
profile where $A\left(x_{0}\right)=\frac{V_{0}}{2} \Rightarrow W=\frac{V_{0}}{A^{\prime}\left(x_{0}\right)}$

To study the RD equations, we define the moving frame:

$$
\begin{aligned}
(x, t) & \rightarrow(\zeta) \\
\zeta & =\frac{x}{v}-t \\
\zeta_{0} & =\frac{x_{0}}{v}-t_{0} \equiv 0 \\
A(x, t) & \rightarrow f(\zeta) \\
B(x, t) & \rightarrow g(\zeta) \\
\epsilon & =1 / v^{2} \\
d & =\text { dilute (regular diffusion) } \\
c & =\text { concentrated (perturbed diffusion) }
\end{aligned}
$$

To study the RD equations, we define the moving frame:

$$
\begin{aligned}
(x, t) & \rightarrow(\zeta) \\
\zeta & =\frac{x}{v}-t \\
\zeta_{0} & =\frac{x_{0}}{v}-t_{0} \equiv 0 \\
A(x, t) & \rightarrow f(\zeta) \\
B(x, t) & \rightarrow g(\zeta) \\
\epsilon & =1 / v^{2} \\
d & =\text { dilute (regular diffusion) } \\
c & =\text { concentrated (perturbed diffusion) }
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& f_{d}=\mathbf{A} \text { concentration in the dilute case } \\
& g_{c}=\mathbf{B} \text { concentration in the concentrated case }
\end{aligned}
$$

Dilute case RD equations in the moving frame:

$$
\begin{aligned}
& 0=k f_{d} g_{d}+f_{d}^{\prime}+\epsilon D_{A} f_{d}^{\prime \prime} \\
& 0=-k f_{d} g_{d}+g_{d}^{\prime}+\epsilon D_{B} g_{d}^{\prime \prime}
\end{aligned}
$$

Dilute case RD equations in the moving frame:

$$
\begin{aligned}
& 0=k f_{d} g_{d}+f_{d}^{\prime}+\epsilon D_{A} f_{d}^{\prime \prime} \\
& 0=-k f_{d} g_{d}+g_{d}^{\prime}+\epsilon D_{B} g_{d}^{\prime \prime}
\end{aligned}
$$

Concentrated case RD equations in the moving frame:

$$
\begin{aligned}
& 0=k f_{c} g_{c}+f_{c}^{\prime}+\epsilon\left(D_{A}\left[\left(1-\frac{f_{c}^{\prime}}{C}\right) f_{c}^{\prime \prime}-\frac{\left(f_{c}^{\prime}\right)^{2}}{C}\right]-D_{B}\left[\frac{f_{c} g_{c}^{\prime \prime}}{C}+\frac{f_{c}^{\prime} g_{c}^{\prime}}{C}\right]\right) \\
& 0=-k f_{c} g_{c}+g_{c}^{\prime}+\epsilon\left(D_{B}\left[\left(1-\frac{g_{c}^{\prime}}{C}\right) g_{c}^{\prime \prime}-\frac{\left(g_{c}^{\prime}\right)^{2}}{C}\right]-D_{A}\left[\frac{g_{c} f_{c}^{\prime \prime}}{C}+\frac{f_{c}^{\prime} g_{c}^{\prime}}{C}\right]\right)
\end{aligned}
$$

We consider k, V_{0} and D_{A} such as:

$$
\epsilon \ll 1
$$

Diffusion can be considered as a perturbation of reaction (do not mix up with perturbed diffusion!).
We write f and g as a perturbation series:

$$
\begin{aligned}
& f=f_{0}+\epsilon f_{1}+\epsilon^{2} f_{2}+\ldots \\
& g=g_{0}+\epsilon g_{1}+\epsilon^{2} g_{2}+\ldots
\end{aligned}
$$

NeMES

We consider k, V_{0} and D_{A} such as:

$$
\epsilon \ll 1
$$

Diffusion can be considered as a perturbation of reaction (do not mix up with perturbed diffusion!).
We write f and g as a perturbation series:

$$
\begin{aligned}
& f=f_{0}+\epsilon f_{1}+\epsilon^{2} f_{2}+\ldots \\
& g=g_{0}+\epsilon g_{1}+\epsilon^{2} g_{2}+\ldots
\end{aligned}
$$

Zero-th order solutions (no diffusion) are straightforwardly obtained:

$$
\begin{aligned}
& f_{d, 0}=f_{c, 0}=\frac{V_{0}}{1+e^{k V_{0} \zeta}} \\
& g_{d, 0}=g_{c, 0}=\frac{V_{0}}{1+e^{-k V_{0} \zeta}}
\end{aligned}
$$

Now, instead of deriving the solutions for the higher-order terms $f_{1,2, \ldots}$ and $g_{1,2, \ldots}$, we focus on the point $\zeta_{0}=0$.

HR EXCELLENCE IN RESEARCH
Now, instead of deriving the solutions for the higher-order terms $f_{1,2, \ldots}$ and $g_{1,2, \ldots}$, we focus on the point $\zeta_{0}=0$.
The expressions for the height and the width, up to the second-order, are given by:

$$
\begin{aligned}
h_{d}= & \frac{V_{0}}{16}\left(1-\frac{D_{B}}{D_{A}}\right)\left[1+\frac{1}{8}\left(1-\frac{D_{B}}{D_{A}}\right)\right] \\
h_{c}= & \frac{V_{0}}{16}\left(1-\frac{D_{B}}{D_{A}}\right)\left(1-\frac{V_{0}}{C}\right)\left[1+\frac{1}{8}\left(1-\frac{D_{B}}{D_{A}}\right)\left(1-2 \frac{V_{0}}{C}\right)\right] \\
W_{d}= & 8 \sqrt{\frac{D_{A}}{k V_{0}}}\left[1+\frac{1}{8}\left(1-\frac{D_{B}}{D_{A}}\right)-\frac{1}{64} \frac{D_{B}}{D_{A}}\left(3-\frac{D_{B}}{D_{A}}\right)\right]^{-1} \\
W_{c}=8 & \sqrt{\frac{D_{A}}{k V_{0}}}\left[1+\frac{1}{8}\left(1-\frac{D_{B}}{D_{A}}\right)\left(1-\frac{3 V_{0}}{2 C}\right)-\frac{1}{64}\left[\frac{D_{B}}{D_{A}}\left(3-\frac{D_{B}}{D_{A}}\right)\right.\right. \\
& \left.\left.+\left(\frac{9}{2}-8 \frac{D_{B}}{D_{A}}+\frac{7}{2} \frac{D_{B}^{2}}{D_{A}^{2}}\right) \frac{V_{0}}{C}-\left(\frac{7}{2}-7 \frac{D_{B}}{D_{A}}+\frac{7}{2} \frac{D_{B}^{2}}{D_{A}^{2}}\right) \frac{V_{0}^{2}}{C^{2}}\right]\right]^{-1}
\end{aligned}
$$

Comparison between analytic and numerical results:

Comparison between analytic and numerical results: Height in the diluted case

Perturbed diffusion ($V_{0} / C=0.25$) vs. regular diffusion ($V_{0} / C=0$):

Perturbed diffusion ($V_{0} / C=0.25$) vs. regular diffusion ($V_{0} / C=0$): Height

Comparison between analytic and numerical results:

Comparison between analytic and numerical results: Width in the diluted case

Perturbed diffusion ($V_{0} / C=0.25$) vs. regular diffusion ($V_{0} / C \rightarrow 0$):
cosers)
Perturbed diffusion ($V_{0} / C=0.25$) vs. regular diffusion ($V_{0} / C \rightarrow 0$): Width

Concentration effects :

Concentration effects :

Height

Width

for $D_{B} / D_{A}=1 / 16$

Conclusion

Conclusion

- The velocity of the front is not affected by the diffusion of B species nor the perturbation of diffusion by solvent concentration.

Conclusion

- The velocity of the front is not affected by the diffusion of B species nor the perturbation of diffusion by solvent concentration.
- The shape of the front is affected by both effects. The height is strongly influenced by the ratio of diffusion coefficients D_{B} / D_{A} and the deviation from ideal solution V_{0} / C. However, its discriminating property is more efficient for low values of D_{B} / D_{A}.

Conclusion

- The velocity of the front is not affected by the diffusion of B species nor the perturbation of diffusion by solvent concentration.
- The shape of the front is affected by both effects. The height is strongly influenced by the ratio of diffusion coefficients D_{B} / D_{A} and the deviation from ideal solution V_{0} / C. However, its discriminating property is more efficient for low values of D_{B} / D_{A}.
- The width is also mainly affected by the ratio D_{B} / D_{A} and V_{0} / C, working better for large values of D_{B} / D_{A}.

Thank You

[1] Morgado, Nowakowski, Lemarchand, Phys. Rev. E 99, 022205 (2019)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 711859.

NaMeS

Cross-diffusion terms derivation from linear irreversible thermodynamics
The entropy production per unit mass due to isothermal diffusion is given by:

$$
\sigma=\frac{1}{T} \sum_{X=A, B, S} \vec{\jmath} X \cdot\left(-\vec{\nabla} \mu_{X}\right)
$$

where T is the temperature, $\vec{\jmath}_{X}$ the flux of species \mathbf{X}, and μ_{X} is the chemical potential of species X.
We consider the framework of the solvent. The flux of species X in this framework is defined by:

$$
\begin{aligned}
\jmath_{X}^{*} & =\rho_{X}\left(\vec{u}_{X}-\vec{u}_{S}\right)=\rho_{X}\left(\vec{u}_{X}-\vec{u}\right)+\rho_{X}\left(\vec{u}-\vec{u}_{S}\right) \\
& =\vec{\jmath}_{X}-\frac{\rho_{X}}{\rho_{S}} \vec{\jmath}_{S}
\end{aligned}
$$

where ρ_{X} is the concentration of X, and \vec{u}_{X} is the velocity of X.

NeMES

Prigogine's theorem: Entropy production does not depend on the chosen framework.
Therefore:

$$
\sigma=\frac{1}{T} \sum_{X=A, B, S} \vec{\jmath} X \cdot\left(-\vec{\nabla} \mu_{X}\right)=\frac{1}{T} \sum_{X=A, B} \jmath_{X}^{\vec{x}} \cdot\left(-\vec{\nabla} \mu_{X}\right)
$$

Assuming that the solution is ideal, we can write:

$$
\mu_{X}=\mu_{X}^{0}+R T \ln \frac{\rho_{X}}{\rho}
$$

Using the expression for \jmath_{X}^{*} and μ_{X}, we get:

$$
\binom{\vec{\jmath}_{A}}{\vec{\jmath}_{B}}=\left(\begin{array}{cc}
1-\frac{\rho_{A}}{\rho} & -\frac{\rho_{A}}{\rho} \\
-\frac{\rho_{B}}{\rho} & 1-\frac{\rho_{B}}{\rho}
\end{array}\right)\binom{\vec{\jmath}_{A}^{*}}{\jmath_{B}^{*}}
$$

NaMeS

Using the expression for $\jmath_{X}^{\vec{*}}$ and μ_{X}, we get:

$$
\binom{\vec{\jmath}_{A}}{\vec{\jmath}_{B}}=\left(\begin{array}{cc}
1-\frac{\rho_{A}}{\rho} & -\frac{\rho_{A}}{\rho_{\rho}} \\
-\frac{\rho_{B}}{\rho} & 1-\frac{\rho_{B}}{\rho}
\end{array}\right)\binom{\overrightarrow{\jmath_{A}^{*}}}{\jmath_{B}^{*}}
$$

Hypothesis: $\jmath_{X}^{*}=-D_{X} \vec{\nabla} \rho_{X}$ (Fick's first law in solvent framework) Then:

$$
\binom{\vec{\jmath}_{A}}{\vec{\jmath}_{B}}=-\left(\begin{array}{cc}
1-\frac{\rho_{A}}{\rho} & \frac{\rho_{A}}{\rho} \\
\frac{\rho_{B}}{\rho} & 1-\frac{\rho_{B}}{\rho}
\end{array}\right)\binom{D_{A} \vec{\nabla} \rho_{A}}{D_{B} \vec{\nabla} \rho_{B}}
$$

