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Background
Computation at the edge of chaos: optimal dynamical range

Kinouchi O. et al. Nat. Phys. 2, 348351 (2006)



Background
Computation at the edge of chaos: optimal SNR

Toyoizumi T. et al. Phys. Rev. E 84, 051908 (2011).



Background
Critical brain hypothesis: neuronal avalanches

Beggs J.M. et al. J. Neurosci. 23 (35) 11167-11177 (2003).



Background
Distribution of synaptic connection strengths (EPSP amplitude)

Song S. et al. PLoS Biol. 3(3): e68 (2005).



Model
Connectivity models
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Model
Connectivity models

Cauchy model

ρ(Jij) =
1

π

g/N

(g/N)2 + J2ij
(1)

Fully connected Gaussian model

Jij ∼ N (0, g2/N) (2)

Sparse Gaussian model with K incoming connections per neuron

Jij ∼ N (0, g2/K ) (3)



Model
Discrete-time random recurrent neural network

xi (t + 1) =
N∑
j=1

Jijφ(xj(t)) (4)

I Symmetric J: relaxation of a global energy function,
corresponds to the spin-glass Hamiltonian.

I Asymmetric J (uncorrelated Jij and Jji ): can be chaotic.
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Simple results
Linear stability analysis

Let φ(x) ≈ ax around x = 0

I Gaussian network chaotic (or unstable) for ag > 1,

I Cauchy network always chaotic (or unstable),

I Related to the distributions of eigenvalues
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Simple results
Linear stability analysis: problem with thresholds

I Thresholds

I Most neurons inactive in the absence of inputs

I Here

φ(x) =

{
1, for x > θ

0, for x ≤ θ
(5)
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Mean field
Sketch of the derivation

I Order parameter: the average network activty

m(t) =
1

N

N∑
i=1

|φ(xi (t))| (6)

I We assume that in the thermodynamic limit networks are
self-averaging, i.e. m(t) = 〈|φ(xi (t))|〉J .

I Caution: 〈xi (t)〉J and 〈xi (t)2〉J not well defined.

I Jij and xi (t) described by the stable distributions with the
characteristic function

ΦJ(k) = e−γ|k| (7)
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Mean field
Results

I Cauchy model

m(t + 1) =
1

π
arctan (m(t)g/θ) (8)

I Fully connected Gaussian model

m(t + 1) =
1

2

[
1− erf

(
θ√

2m(t)g

)]
(9)

I Sparse Gaussian model

m(t+1) =
1

2

K∑
n=1

(
K

n

)
m(t)n(1−m(t))K−n

(
1− erf

(
θ
√
K√

2ng

))
(10)
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Mean field
Theoretical predictions
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Mean field
Theoretical predictions vs. simulations
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Critical behavior
Scale-free avalanches & mapping to the branching process

0 0.5 1 1.5 2 2.5
log(S)

-1.5

-1

-0.5

0

lo
g 

P
ro

b.
(S

iz
e 

>
 S

)

 x -1/2

 = 0.98
 = 1
 = 1.02
 = 1.05

0 0.5 1 1.5
log(T)

-1.5

-1

-0.5

0

lo
g 

P
ro

b.
(T

im
e 

>
 T

)

 x -1

I Prob(Jij > θ) = 1
π arctan
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Nθ

)
I λ = lim

N→∞
N
π arctan

( g
Nθ

)
= g

θπ

I At critical point λ = 1.
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Critical behavior
Scale-free avalanches & mapping to the branching process
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Spiking neurons
Simulations of 104 leaky integrate-and-fire neurons.
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Spiking neurons
Simulations of 104 leaky integrate-and-fire neurons.
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Summary

I Gaussian network: discontinuous transition to chaos, cannot
sutain low activity levels, no criticality

I Novel model of connectivity with heavy tails: Cauchy network

I Cauchy network: continuous transition to chaos, low activity
levels, scale-free avalanches

I Strong synapses as a backbone, weak synapses as a pool of
potential connections (weakly informative sparsity prior)
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