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Of Markets . . .

Stylized Facts of Market Dynamics

Fat tailed (leptocurtic) return distributions
Fast decorrelation of asset returns
Slow decorrelation of absolute returns
Long range correlations of volatility
(volatility clustering).
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Of Markets . . .

Stylized Facts of Market Dynamics

Fat tailed (leptocurtic) return distributions
Fast decorrelation of asset returns
Slow decorrelation of absolute returns
Long range correlations of volatility
(volatility clustering). S&P 500 return distributions

(Gopikrishnan et al PRE, 1999)

5 / 39



Of Markets . . .

Stylized Facts of Market Dynamics

Fat tailed (leptocurtic) return distributions
Fast decorrelation of asset returns
Slow decorrelation of absolute returns
Long range correlations of volatility
(volatility clustering).

Auto-correlations of returns
and absolute returns

(Gopikrishnan et al PRE, 1999)
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Of Markets . . .

Stylized Facts of Market Dynamics

Fat tailed (leptocurtic) return distributions
Fast decorrelation of asset returns
Slow decorrelation of absolute returns
Long range correlations of volatility
(volatility clustering).

Daily returns S&P 500
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Geometric Brownian Motion

Geometric Brownian motion model (GBM)

dSi(t) = Si(t)
[
µidt+ σidWi(t)

]
exhibiting

log-prices follow diffusive motion with drift
Gaussian log-return distributions
no correlations of volatility

Is the “harmonic oscillator” of Financial Mathematics.

Is at the heart of the Black-Scholes option pricing method.

Does not reproduce the key empirical facts of market dynamics.

Yet, with modifications still widely used in financial industry.
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Fixes

Phenomenological

Replace Brownian (Gaussian) increments in GBM by fat tailed
increments (e.g. Lévy: Mantegna and Stanley, 1994)
Add evolution of volatilities ⇒ ARCH/GARCH/stoch. volatility
(Engle, 1982; Engle and Bollerslev, 1986; Heston, 1993)
. . .
Typically single asset descriptions; no systemic perspective.

Agent based models

e.g. Minority Game (Challet and Zhang, 1997)
Percolation models (Stauffer et al 1998, Cont and Bouchaud 2000)
Ising models of interacting agents (Iori, 1999; Da Silva Stauffer 2001)
. . .
All need fine-tuning of parameters to reproduce stylized facts.

Somehow unsatisfactory.
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Stepping Back – A Gedanken-Experiment

Question
Can we, just by looking at the basic structure of the problem of
describing market dynamics, obtain guidance about fundamental
properties any good model of market dynamics should have?

To answer this question, let us perform a Gedanken-Experiment.
It runs like this:

Suppose I knew everything about markets, and when I say this,
I mean really everything!
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Stepping Back – A Gedanken-Experiment

I would write down the complete set of dynamical equations
describing all processes governing a market.
(basic econmic laws, influence of supply and demand, effect of regulatory frameworks, psychology of traders, financial

positions of trading agents, laws of order book dynamics, . . . ).

Suppose that I would integrate out all degrees of freedom from my
equations, except prices of assets traded in the market.

Which properties would the reduced model necessarily have?

It would

exhibit interactions between prices
exhibit a non-Markovian dynamics

⇒: Formulate the simplest model with these properties.
RK & P Neu, J Phys A (2008); K. Anand, J Khedair & RK Phys Rev E (2018)
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A Minimal Model of Interacting Prices – iGBM

Generalization

dui(t) = Iidt+ σidWi(t)

+
[
− κiui(t) +

∑
j

Jij gj(t) + σ0u0(t)
]
dt ,

gj(t) =

∫ t

M(t− s) g(uj(s))

⇔ interacting geometric Brownian motion model (iGBM),

with
the κi producing a mean reversion effect,
the Jij describing strengths of interactions between assets,
the g = g(·) denoting non-linear functions (e.g. sigmoid)
describing the nature of the feedback,
the Ii = µi − 1

2σ
2
i (Ito)

the u0(t) assumed to be a slow process describing the evolution
of macro-economic conditions (model as slow OU process)
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iGBM and Neural Networks — Brains and Markets

iGBM and Neural Netowrks

dui(t) = Iidt+ σidWi(t)

+
[
− κiui(t) +

∑
j

Jij gj(t) + σ0u0(t)
]
dt .

gj(t) =

∫ t

M(t− s) g(uj(s))

Describes dynamics of a network of graded response neurons,
with

the ui denoting trans-membrane voltages,
the κi describing leakage across the membrane,
the Jij denoting synaptic couplings,
the g(·) being neural response functions
the Ii describing external signals.
the function u0(t) representing the effect of neuro-modulators.
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Analysis (Synthetic Random System)

Use generating functionals (ni(t) = g(ui(t)))

Z[`|u0] =

〈
exp

{
− i

∫
dt
∑
i

`i(t)ni(t)
}〉

,

Averaging over couplings maps problem onto a family of effective
single node problems,

u̇ϑ(t) = −κuϑ(t) + I + J0m(t) + σ0u0(t)

+αJ2

∫ t

0
dsG(t, s)nϑ(s) + φϑ(t) ,

with ϑ ≡ (I, κ, σ) used as shorthand for site-random quantities.
Here φϑ is couloured noise with

〈φϑ(t) 〉 = 0

〈φϑ(t)φϑ′(s) 〉 = δϑ,ϑ′
[
σ2 δ(t − s) + J2q(t, s)

]
.

Order-parameters are coupled through a set of self-consistency
equations.
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Self-Consistency Equations

Self-consistency equations, (nϑ(t) = g(uϑ(t))

m(t) =
〈
〈nϑ(t)〉φϑ

〉
ϑ
,

q(t, s) =
〈
〈nϑ(t)nϑ(s)〉φϑ

〉
ϑ
,

G(t, s) =

〈
δ〈nϑ(t)〉φϑ
δφ(s)

〉
ϑ

.

Inner averages over noise φϑ evaluated using path-integral
techniques (with an action that is a functional of m, q, and G).
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Separation of Time Scales — Stationarity

Assume macro-economic process u0(t) changes slowly: e.g.

du0 = −γu0dt+
√

2γ dW0 , γ � 1 ,

. . . so that the system becomes statistically stationary at given u0
Derive FPEs for stationary states ⇒ uϑ OU process

m =
〈〈
g(uϑ + σuϑ

x)
〉
x

〉
ϑ
,

q(τ) =
〈〈
g
(
uϑ + σuϑ

x
)
g
(
uϑ + σuϑ

y
) 〉

x y

〉
ϑ
,

χ =
〈〈
g′(uϑ + σuϑ

x)
〉
x

〉
ϑ
,

Ĉ(0) =

∫ +∞

−∞
dτ [q(τ)− q] ,

in which q = limτ→∞ q(τ), and χ is an integrated response.

For details, see K Anand, J Khedair, and RK, PRE 97 052312 (2018).
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Phase Structure

System exhibits a glassy pase in large parts of parameter space
(sufficiently small J0/J , sufficiently small noise σi ≡ σ).

FM-SG boundary for I ∼ N (0, σ2
I ), u0 = 0; J = 0.5, α = 0.5 σ = 0.1.
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Return Distributions

Distribution of returns

Distribution of returns for exponentially distributed κ with 〈κ〉 = κ0 = 0.2 and κ0|t− t′| = 20.

J0 = J = α = 0.5, long time asymptotics (full line) and numerical evaluation (dashed), ν = 1.
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Collective Pricing

Quasi-stationary equilibrium log-prices ūϑ determined by collective
effects

Distributions of equilibrium log-prices. Left: Non-interacting system Right: Interacting system. Narrow blue curves

κ = 0.5, u0 = 0.1, Wider set of curves: κ = 0.2 and u0 = 0.1 for the nearly symmetric (black) curves; u0 = 0.5

for the more asymetric (red) curves. Overall Γ distributed κ with ν = 1 and. κ0 = 0.2. Interacting system

J0 = J = α = 0.5
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Volatility Clustering and Metastability

Embed attractors of known structure

Jij → Jij +
1

N

p∑
µ=1

ξµi ξ
µ
j

mµ(t) =
1

N

∑
i

ξµi g(ui(t)

Top: changes of the market index for

∆t = 25. Bottom: overlaps with three

unbiased random patterns embedded in a

system of N = 50 assets, with γ =

10−4.
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Inference — Simple ML Approach

Use model to test inference algorithms and identify
strengths/weaknesses

In second step apply to real data (S&P 500)

Log-likelihood (discretize time: ∆); parameters determined
only by continuous part of trajectory.

L =
∑
i,t

∆

2σ2i

[
u̇i − fi(u(t))

]2
with

fi(u(t)) = −κiui + Ii +
∑
j

Jijg(uj) + σ0u0

Parameters θ = {κi, Ii, Jij}
Use stochastic gradient descent or data batches to solve ∇θL = 0.
Second method gives linear equations with coefficients determined by
various sample-correlations.

Issues: (i) sampling noise, (ii) non-ergodicity of the dynamics.
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Issue (i): Sampling Noise — RMT

ML equations require inversions of various correlation matrices that are estimated, sampling noise⇒ random Matrices. Shown

are (left) spectra of estimated correlation matrices Cij = 〈δg(ui)δg(uj)〉, compared with Marčenko Pastur law, and (right)

corresponding scatter-plots of Ĵ vs. Jtrue. Here N = 125, and α = N/T
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Issue (ii): Non-Ergodicity

System dynamics is non-ergodic.

Learning couplings requires to sample sufficiently many ergodic
components

For fixed data sample size this depends on ergodic time-scale γ−1.

Scatter plots of estimated vs true couplings (Left), and plots of estimated vs initial couplings (Right) for a partially learnt

situation. Parameters are N = 150, T = 105, and γ = 10−7.
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Issue (ii): Non-Ergodicity

System dynamics is non-ergodic.

Learning couplings requires to sample sufficiently many ergodic
components

For fixed data sample size this depends on ergodic time-scale γ−1.

Scatter plots of estimated vs true couplings (Left), and plots of estimated vs initial couplings (Right) for a fully learnt situation.

Parameters are N = 150, T = 105, and γ = 10−2.
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Issue (ii): Non-Ergodicity

System dynamics is non-ergodic.

Learning couplings requires to sample sufficiently many ergodic
components

For fixed data sample size this depends on ergodic time-scale γ−1.

(Left): Normalized error of couplings in gradient descent learning as function of number of iterations for various γ.
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Real-Data

Lots of issues (splits, discontinued trading, out-listing)

Use interacting model only on a ‘co-moving’ frame

Analysis predicts significant levels of interaction

Inferred model reproduces some global properties of real data, such as

return correlations
distributions of (log)-returns

with reasonable accuracy.

Use for risk-analysis? Early Warning Indicators?
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Real-Data: S&P 500 — Inferred Couplings

(Top) Mean, standard deviation and forward backward correlations between couplings as functions of time over a 14

year period starting in Jan 2004, re-evaluated every 30 days (based on data of preceeding 150 days). (Bottom: Top singular

value of inferred coupling matrix. Data for N = 200 continuously listed S&P500 stocks.
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Real-Data: S&P 500 — Return Correlations

Spectrum of correlation matrix Cij = 〈δuiδuj〉 of true returns and of correlation matrix of S&P 500 log-returns generated (4

months in 2017) from model (inferred from 6 month of prior data). Parameters are N = 200, N/T = 0.03. (Note: Jumps

not yet included in generative Model).
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Real-Data: S&P 500 — Return Distributions

Distribution of true (red) and predicted (blue) 5-min log-returns across the market (Left) and for two randomly chosen assets

(Middle & Right). Predictions are for 3 months ahead; statistics taken over 8 months, May–Dec 2016. Parameters are

N = 220, T = 104. Jumps included in generative model.
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Real-Data — Market States?

(Top): Overlap of market state with 3 selected singular vectors of the inferred interaction matrix as a function of time for a 5y

period. (Bottom): Concurrent changes of the index. The period includes two major restructurings overlapping with the Draghi

speech 26/07/12 and with the flash crash of 24/08/15.
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Real-Data — Detecting Instabilities?

Assess stability of system trajectories of market

dui(t) = fi(ut)dt+ σidWi(t)

by looking at eigenvalues of the Hessian

Hij =
∂fi(ut)

∂ujt

(Top): Overlap of market state with 3 selected singular vectors of the inferred interaction – zoom into period surrounding

flash-crash. (Bottom): Concurrent evolution of the number of unstable directions of the system dynamics.
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Summary

Argued

that market model formulated in terms of asset prices should exhibit
interactions between prices, which exhibit memory.
simplest interacting generalization of GBM has structure of a NN

Expect generally many meta-stable phases.

Different susceptibilities within phases entail different volatilities.

Find key properties of market dynamics in (semi-)quantitative fashion.

Fat tailed return distributions, non-trivial equilibrium pricing
distributions

Clear relation between volatilities and meta-stable states.

Started inference (synthetic and real data)

issues of sampling noise and non-ergodicity
real data reasonably well reproduced by simple inferred model
of use for risk-management?
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Thank You!
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Return Distributions

Compute distribution of returns

∆uϑ ≡ uϑ(t)− uϑ(t′)

in the quasi-stationary regime γ|t− t′| � 1.
For individual uϑ find

∆uϑ ∼ N
(

0,
σ2

κ

(
1− e−κ|t−t

′|
))

.

Time-scales (i) short: κ|t− t′| � 1, (ii) medium: κ|t− t′| = O(1),
(iii) long: κ|t− t′| � 1.
Assuming the κ are Γ- distributed

P (κ) =
1

κ0Γ(ν)

( κ
κ0

)ν−1
exp(−κ/κ0) ,

distribution of returns across the market (at long times κ|t− t′| � 1):

p(∆u) =

√
κ0√

2πσ2

Γ(ν + 1
2)

Γ(ν)

(
1 +

κ0(∆u)2

2σ2

)−(ν+1/2)

.

⇒ fat power-law tails.
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