

Competition between cancer and immune system cells: A thermostatted kinetic theory approach

Annie Lemarchand

Laboratoire de Physique Théorique de la Matière Condensée Sorbonne Université, CNRS, Paris

Krakow, 18-21 September 2019

Outline

Biological context: Competition between immune system and cancer

The model

- interactions
- thermostat of cell activity
- kinetic equations
- adaptation of a kinetic Monte Carlo algorithm introduced for dilute gases

Results

- reproduction of the 3 E's (elimination, equilibrium, escape) of immunotherapy
- spatio-temporal evolution of a tumor (pseudo-oscillations, waves, ...)

Conclusions and perspectives

Competition between immune system and cancer

Different types of immune system cells

Dendritic cells

- ingest cancer cells
- isolate antigens
- present antigens to T cells
- trigger activation and proliferation of T cells including killer T cells

Cancer cells

- proliferate
- develop the ability to blend into the surrounding tissue
- may mislead the immune system cells which limit their own production (regulatory T cells)

Competition between immune system and cancer Model?

A single type of immune system cells I, cancer cells C, normal cells N

- $\bullet \mbox{ Proliferation (division)} \quad I \longrightarrow I + I \quad C \longrightarrow C + C \\$
- $\text{ Cell death } \qquad \mathrm{I} \to \phi \qquad \mathrm{C} \to \phi$
- Interactions (if $I{=}{\sf killer} \; {\sf T} \; {\sf cell}) \quad I + C \to I$
- Mutations $N \rightarrow C$
- Activation (learning)? Cells possess an activity *u*

The model (interactions)

Only 3 processes including interaction, activation, proliferation (or death)

Learning = increase of activity by \mathcal{E}

$$\begin{cases} \text{if } u > u' \\ I(u) + C(u') \longrightarrow I(u + \varepsilon) + I(u') \\ C(u) + I(u') \longrightarrow C(u + \varepsilon) + C(u') \\ \begin{cases} C(u) + N(u') \longrightarrow C(u + \varepsilon) + C(u') \\ \text{Reservoir} \longrightarrow N(u'') \end{cases}$$

Bianca, Lemarchand, J. Chem. Phys. 145, 154108 (2016)

The model (interactions)

proliferation = autocatalytic processes

Rate constants proportional to the relative activity of the interacting couple

if u > u'

$$\begin{split} \mathrm{I}(u) + \mathrm{C}(u') & \xrightarrow{k_{ic}(u'-u)} \mathrm{I}(u+\varepsilon) + \mathrm{I}(u') \\ \mathrm{C}(u) + \mathrm{I}(u') & \xrightarrow{k_{ci}(u'-u)} \mathrm{C}(u+\varepsilon) + \mathrm{C}(u') \\ & \left\{ \mathrm{C}(u) + \mathrm{N}(u') \xrightarrow{k_{nc}(u'-u)} \mathrm{C}(u+\varepsilon) + \mathrm{C}(u') \\ & \operatorname{Reservoir} & \longrightarrow & \mathrm{N}(u'') \end{array} \right\}$$

The model (thermostat of cell activity)

Regulation of cell activity using a "thermostat" mimicking loss of information due to:

- cell death
- Action of regulatory T cells

Mechanics

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = E - \alpha v$$

By analogy

$$\frac{\mathrm{d}u}{\mathrm{d}t} = E - \alpha u$$
$$\left\langle u^2 \right\rangle \approx \mathrm{Const} \Rightarrow \alpha = \frac{\left\langle u \right\rangle E}{\left\langle u^2 \right\rangle}$$

Kinetic theory approach

Distribution function $f_j(t, x, v, u)$ for each type of cell j = i, c, n

Interactions

$$\begin{aligned} &(\partial_t + \boldsymbol{v} \cdot \nabla_{\boldsymbol{x}}) f_j(t, \boldsymbol{x}, \boldsymbol{v}, \boldsymbol{u}) + \partial_{\boldsymbol{u}} \left(\begin{pmatrix} E - \alpha \boldsymbol{u} \end{pmatrix} f_j \right) = \boldsymbol{I}_j + V_j \\ & \text{Advection} & \text{`Thermostat'} & \text{Velocity} \\ & \text{controls activity fluctuations} & \text{randomization} \end{aligned} \\ & \text{Example } j = i \quad \boldsymbol{I}_i = \int_{\mathbb{R}^+} k_{ic}(u - \epsilon - u') H(u - \epsilon - u') f_c(t, u') f_i(t, u - \epsilon) \mathrm{d}u' \\ & + \int_{\mathbb{R}^+} k_{ic}(u' - u) H(u' - u) f_c(t, u) f_i(t, u') \mathrm{d}u' & I + C \to 2I \\ & + \int_{\mathbb{R}^+} k_{ci}(u' - u) H(u' - u) f_c(t, u') f_i(t, u) \mathrm{d}u'. & C + I \to 2C \end{aligned}$$

Wennberg, Wondmagegne, J Stat Phys **124**, 859 (2006) Masurel, Bianca, Lemarchand, AIP Conference Proc. **2132**, 190005 (2019)

Adaptation of the Direct Simulation Monte Carlo method

During Δt

- Interactions in each spatial box updating of natures *j* and activities *u*
- Updating of positions *x*
- Randomization of velocities v
- Thermalization updating of activities *u*

Simulation algorithm

Activity thermalization: $\Delta u_i = (E - \alpha u_i) \Delta t$

Results

• 2D simulations

• Rate constants
Boosted immune system
$$k_{ic} = 10k_{ci}$$

Slow mutation rate of normal cells $k_{nc} << k_{ci}$
• Speed $|v| << \frac{\Delta x}{\Delta t}$

• Intermediate value of the field associated with the thermostat

Video for homogeneous initial conditions $N_c^0 = N_i^0 = 20$

Transition between two behaviors for E_c

Inhomogeneous initial conditions

video

Inhomogeneous initial conditions

Local increase of the number N_i of immune system cells

Pseudo-oscillations of total cell numbers and mean activities

Maximum of the mean activity \mathcal{U}_i of immune system cells

Inhomogeneous initial conditions

Restoration of initial cylindrical symmetry

Maximum of the mean activity $\mathcal{U}_{\mathcal{C}}$ of cancer cells

Pseudo-oscillations of total cell numbers and mean activities

Conclusion

• Crucial role played by the thermostat (control of activity fluctuations) Transition between two behaviors Non intuitive cancer proliferation for inefficient thermalization ($k_{ic} = 10k_{ci}$)

Cancer control for efficient thermalization

- The model reproduces the observed three E's (Elimination, Equilibrium, Escape of cancer) of immunotherapy Dunn et al, Nat Immunol 3, 991 (2002)
- Complex spatiotemporal behaviors for inhomogeneous initial conditions (derivation of macroscopic equations for mean cell numbers and activities in progress)

Thanks to

Carlo Bianca Professor at ECAM Université Paris Seine Léon Masurel PhD Sorbonne Université

Thank you for your attention!

Bianca, Lemarchand, J. Chem.Phys.**145**, 154108 (2016) Masurel, Bianca, Lemarchand, Physica A **506**, 462 (2018) Masurel, Bianca, Lemarchand, AIP Conference Proc. **2132**, 190005 (2019)