

Contribution ID: 47

Type: Poster

Flexopolarization and Landau–de Gennes theory of modulated nematic phases

Tuesday, 16 September 2025 16:07 (1 minute)

Modulated nematic phases, such as the twist-bend nematic (NTB) and splaybend nematic (NSB) phases, experimentally discovered within the last 15 years, are among the most intriguing liquid crystal phases due to their potential practical applications. A possible mechanism underlying the stabilization of these phases is flexopolarization-induced softening of the bend elastic constant. To investigate this mechanism, we employ the helicity-mode expansion of both the alignment tensor field Q and the polarization field P , with the goal of identifying global minimizers of the minimal-coupling Landau–de Gennes theory with flexopolarization. This theoretical approach was first proposed by Longa and Trebin [1] and has successfully explained the stability [2,3] and field-induced behavior [4] of the NTB phase. The primary objective of the present study is to identify all classes of phase diagrams exhibiting at most one-dimensional periodic structures that can be predicted by this theory. The helicity-mode expansion is utilized to systematically control approximations when modeling these structures. The most significant new result is the simultaneous identification of both the NTB and NSB phases within a single phase diagram, along with the characterization of possible phase transitions between these and other nematic phases.

- [1] L. Longa and H.-R. Trebin, Spontaneous polarization in chiral biaxial liquid crystals, *Phys. Rev. A* 42, 3453 (1990).
- [2] L. Longa and G. Pajak, Modulated nematic structures induced by chirality and steric polarization, *Phys. Rev. E* 93, 040701 (2016).
- [3] L. Longa and W. Tomczyk, Twist-bend nematic phase from Landau-de Gennes perspective, *J. Phys. Chem. C* 124, 22761 (2020).
- [4] G. Pajak, L. Longa, and A. Chrzanowska, Nematic twist-bend phase in an external field, *Proc. Natl. Acad. Sci. U.S.A.* 115, E10303 (2018).

Primary author: Dr KARBOWNICZEK, Paweł (Faculty of Materials Engineering and Physics, Cracow University of Technology)

Co-author: Prof. LONGA, Lech (Marian Smoluchowski Institute of Physics, Department of Statistical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University)

Presenter: Dr KARBOWNICZEK, Paweł (Faculty of Materials Engineering and Physics, Cracow University of Technology)

Session Classification: Coffee and Poster Session