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Abstract

The ‘stylo’ package (Eder et al. 2013) provides easy-to-use implementations
of various established analyses in the field of computational stylistics, including
non-traditional authorship attribution, genre recognition, style development (“sty-
lochronometry”), etc. The package includes a number of explanatory methods
provided by the function stylo() (multidimensional scaling, principal component
analysis, cluster analysis, bootstrap consensus trees). Addtionally, a number of
supervised machine-learning methods are available via the function classify()
(Delta, support vector machines, naive Bayes, k-nearest neighbors, nearest shrunken
centroids). The rolling.delta() function analyses collaborative works and tries
to determine the authorship of fragments extracted from them. The function
rolling.classify() offers a more flexible interface to sequential classification of
collaborative works. The oppose () function performs a contrastive analysis between
two given sets of texts: among other things, it generates lists of words significantly
preferred and avoided by one or more authors in comparison to the texts by another
author (or a set of them).
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1 Introduction

Stylometric studies, in all their variety of material and method, have two features in
common: the electronic texts they study have to be coaxed to yield numbers, and the
numbers themselves have to be processed via statistics. Sometimes, the two actions
are two independent parts of a given study. To give the simplest example, one piece of
software is used solely to compile word frequency lists; then, one of the many commercial
statistics packages takes over to extract meaning from this mass of words, draw graphs
etc.

Yet, as stylometrists have begun to produce statistical methods of their own — to name
but a few, Burrows’s Delta, Zeta and Iota (Burrows, 2002, 2007) and their modifications
by other scholars (Argamon, 2008, Craig and Kinney, 2009, Hoover, 2004a, 2004b) —
commercial software, despite its wide array of accessible methods, becomes something of
a straightjacket. This is why a number of dedicated stylometric solutions have appeared,
targeting the specific analyses frequently used in this community. Hoover’s Delta, Zeta
and Iota Excel spreadsheets are pioneering examples of this approach (Hoover, 2004b).
Constantly developed since 2004, they have at least two major assets: they do exactly
what the stylometrist wants (with several optional procedures) and they only require
fairly standard — although proprietary — spreadsheet software. This has been especially
helpful for uses in specialist workshops and classrooms: the student only needs additional
(and, often, free) software to produce word frequency lists and (s)he is ready to go.
Yet Excel imposes one important limitation: it is very demanding from the point of
view of memory usage. Moreover, the two-stage nature of the process (a separate
piece of software prepares word lists that can be later automatically imported into
the spreadsheet) might be problematic, because it takes an experienced Visual Basic
programmer to make Excel itself extract the various frequency dictionaries needed.

In this respect, Juola’s JGAAP can directly import texts in a variety of formats
and perform a variety of authorship attribution tasks using an impressive variety of
statistical methods (Juola et al., 2008). These can be further expanded by experienced
programmers in Java. Java is also the language of another software solution which takes
an even broader approach: Craig’s Intelligent Archive is able to perform a number of
standard stylometric procedures, but it can also be used as a corpus organizer. Once the
initial work of registering texts is done, it enables a versatile combination of individual
texts and groups of texts (Craig and Kinney, 2009).

Since contemporary stylometry uses either stand-alone dedicated programs custom-
made by stylometrists, or applies existing software, the stylo package can be situated
somewhere in-between: the powerful open-source statistical programming environment



R provides, on the one hand, the opportunity of building statistical applications from
scratch, and, on the other, allows less advanced researchers to use ready-made scripts
and libraries (cf. http://www.R-project.org). In our own stylometric adventure with R,
one of the aims was to build a tool (or a set of tools) that would combine sophisticated
state-of-the-art algorithms for classification and/or clustering with a user-friendly,
“point-and-click” interface. In particular, we wanted to implement a number of popular
multidimensional methods to be used by scholars without advanced programming skills.
It soon became evident that once our R scripts were provided with a graphical user
interface and modest documentation, they lent themselves well to classroom use. In our
experience, this suite of tools offers an excellent way to work around R’s typically steep
learning curve, without losing anything of the power of the environment — namely R’s
considerable computing power and speed.

A crucial point in building the interface was to make sure that all stages of a
typical stylometric analysis — from loading texts to visualizing the results — could be
performed from within a single function. The stylo() function, for instance, does
all the work: it processes electronic texts to create a list of all the words used in all
texts studied, with their frequencies in the individual texts; normalizes the frequencies
with z-scores (if applicable); selects words from the desired frequency ranges; performs
additional procedures that might improve attribution, such as Hoover’s (2004a, 2004b)
automatic deletion of personal pronouns and “culling” (automatic removal of words too
characteristic for individual texts); compares the results for individual texts; performs
a variety of multivariate analyses; presents the similarities/distances obtained in tree
diagrams; and finally, produces a bootstrap consensus tree (a new graph that combines
many tree diagrams for a variety of parameter values). It was our aim to develop a
general platform for multi-iteration stylometric tests; for instance, an alternative script
derived from the function classify() produced heatmaps to show the degree of Delta’s
success in attribution at various intervals of the word frequency ranking list (Rybicki
and Eder, 2011).

The last stage of the interface design was, firstly, to add a GUI (since some humanists
might be allergic to the command-line mode provided by R) and, secondly, a host of
various small improvements (like saving and loading the parameters for the most recent
analysis, a wide choice of graphic output formats, etc.). Nevertheless, advanced users
could still easily switch off the GUI and embed the functions provided by the “stylo”
library in their own scripts.

2 Installation

Make sure you are connected to the internet. Launch R. Type install.packages("stylo")
in the console. Whenever you start a new R session, type library(stylo). This will
automatically load all the functionality provided in the package (see below). If you are
very lazy and only use R for stylometric purposes, you can find your Rprofile.site
configuration file (in R/R-<your R version here>/etc), open it with administrator
privileges and insert the line library(stylo) there. In this case, the “stylo” library
will be loaded at the start of each R session and you can start invoking the particular
functions right away.



3 Functions provided

The most important tools included in this package are distributed over the following
functions:

e stylo()

classify()

oppose ()

e rolling.delta()

rolling.classify()

The next sections of this manual describe these four functions together will all the
different input options they can take. If you want to get a general overview of these four
functions, type help(stylo), help(classify), etc., and a help window will appear.
More advanced users might be interested in some other functions provided by the library.
Generally speaking, they are a great deal of lower-level functions which are called
automatically from inside the upper-tier functions, such as classify(), oppose(), etc.
This lower-level functionality can of course be used for developing your own scripts and
functions. These include:

e assign.plot.colors
e define.plot.area

e delete.markup

e delete.stop.words

e dist.argamon

e dist.cosine

e dist.delta

e dist.eder

e dist.simple

e draw.polygons

e gui.classify

e gui.oppose

e gui.stylo

e load.corpus.and.parse
e load.corpus

e make.frequency.list

e make.ngrams



e make.samples

e make.table.of.frequencies
® parse.corpus

® parse.pos.tags

e perform.culling

e perform.delta

e perform.knn

e perform.naivebayes

e perform.nsc

e perform.svm

e stylo.default.settings
e stylo.pronouns

e txt.to.features

e txt.to.words.ext

e txt.to.words

e zeta.chisquare

e zeta.craig

e zeta.eder

In most cases, these lower-level functions provide very basic processing functionality
and they are therefore not intended to be invoked by everyday users. Hence, they will
not be discussed in this manual. However, if you are interested how they work and how
to use them, you can invoke the help pages for these functions: help(load.corpus),
help(make.ngrams), etc. Help pages routinely contain some insightful examples as to
how to use the code: refer to them if you want to understand what a particular function
does. The examples can be copy-pasted into an active R console. (Don’t be afraid of
the lines ‘## Not run’ — they prevent R to run some automatic checks on interactive
functions; you can use these examples safely).

Apart from functions, the package ‘stylo’ (ver. ;0.6.1) contains three datasets that
can be used to start playing with stylometric methods without any actual texts. The
datasets are as follows:

e novels
e galbraith
e lee

The first dataset contains 9 full-size novels by Jane Austen and the Bronté sisters.
The second and the third set contains computed tables of word frequencies for 26 and
28, resp., contemporary novels that for copyright-related reasons could not be made
available in their original format. A detailed description of the datasets can be retrieved
via help(novels), help(galbraith) and help(lee).
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Figure 1: Working directory containing a subdirectory corpus and some files generated
by the function stylo().

4 stylo()

This is currently the main tool in the package. The function stylo() is meant to enable
users to automatically load and process a corpus of electronic text files from a specified
folder, and to perform a variety of stylometric analyses from multivariate statistics to
assess and visualize stylistic similarities between input texts. This function provides
explanatory analyses; any users interested in machine-learning supervised methods
might want to skip this section and go to classify (), below.

stylo() will typically be used to produce a most-frequent-word (MFW) list for the
entire corpus. Next, it will acquire the frequencies of the MFWs in the individual texts
to create an initial matrix of words (rows) by individual texts (columns): each cell will
contain a single word’s frequency in a single text. Subsequently, it will normalize the
frequencies: it selects words from the the desired frequency ranges for an analysis (this
is also saved to disk as table_with_frequencies.txt and it will perform additional
processing procedures (automatic deletion of personal pronouns and culling, see 4.3.5
below) to produce a final wordlist for the actual analysis (this information is saved to
disk in the current working directory as wordlist.txt. It then compares the results
for individual texts, performing e.g. distance calculations and using various statistical
procedures (cluster analysis, multidimensional scaling, or principal components analysis).
Finally, the function will produce graphical representations of distances between texts and
it will write the resulting authorship (or similarity) candidates to a logfile (results.txt)
in the current working directory. When the consensus tree option is selected, the
script produces virtual cluster analyses for a variety of parameters, which then produce
a final diagram that reflects a compromise between the underlying cluster analyses.

4.1 Corpus preparation

The procedure of loading corpora as described immediately below is probably the
best way to start doing your first analyses. However, experienced users of R sooner or
later will discover that input data structures (corpora, vectors of features, tables of
frequencies) can be passed as R objects directly from, say, other functions, without any
interaction with texts files. Refer to section 9.1 for details.

Each project requires a separate and dedicated working folder. You will want to
give it a meaningful name (like SanskritPoetry11 rather than Blah-blah), since the



name of the folder will appear as the title in your graphs generated by the function. By
default, the results of your analyses and other useful files will be written automatically
to this folder. The actual text files for your analyses must be placed in a subfolder in the
working directory, named corpus (Note: all file names are case sensitive!). All functions
in this tool suite expect to find at least two input texts for their analyses.

The text files need to follow the following naming syntax: category_title.txt. For
people working in authorship attribution, the category will capture a text’s authorial
signature; other users, perhaps interested to compare a translators’ styles, should
name their files translatorname_title.txt. Likewise, if you are looking for stylistic
similarities between writers of the same gender, use gender_title.txt, etc. It is
really important to use an underscore “_” (underscore) as a delimiter: e.g. colors on
the final graphs will also be assigned according to strings of characters up to the
first underscore in the input files’ names. (For further details and examples, type
help(assign.plot.colors)). Consider the following examples, in which the classes
are the authors’ names and authors’ gender, respectively:

ABronte_Agnes.xml
ABronte_Tenant.xml
Austen_Emma.xml
Austen_Pride.xml
Austen_Northanger.xml
Conrad_Nostromo.xml
Conrad_Lord.xml
Dickens_Pickwick.xml

M_Conrad_Lord_Jim.txt
M_Joyce_Dubliners.txt
F_Woolf _Night_and_day.txt
F_Woolf_Waves.txt

Everything that comes after the underscore (say, the short titles of novels) can be
followed by any other information. Be careful with long names, however, since these
might not fit in the graphs that will be generated. The texts must either be all in plain
text format, or all in HTML, or all in TEI-XML (the latter two options have not been
extensively tested so far, and should be used carefully).

A concise remark about possible encoding issues should also be added. If the operating
system you use is Linux or Mac, you just need to make sure the texts are all in UTF-8
(aka Unicode). If your operating system is Windows, you have two options. Firstly, you
might want to save all the texts in ANSI codepage, but you have to tread carefully if
your machine runs one charset, say, Central European (1250) and your texts are in the
Western European codepage (1252); in this respect, for instance, French is notoriously
difficult (nous sommes vraiement désolés). Alternatively, you can convert your texts
into Unicode (a variety of freeware converters are available on the internet), and to use
an appropriate encoding option when launching the function, say, stylo() either by
clicking the “UTF-8” button on GUI (beginners), or passing the argument encoding =
"UTF-8" directly to the function (advanced users).
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Figure 2: R console on Windows: easiest way to set working directory

4.2 Starting the function

Start up R. At the prompt (where you see the cursor blinking), move to your folder
(the main folder you will be working in, not the corpus subfolder) using the command
setwd (). E.g.:

setwd("/Users/virgil/Documents/disputed-works-of-mine")

You can use either absolute paths (as in the above example), or relative ones, i.e. you
can navigate directly from the current working directory. If you want to go, say, two
levels up and then descend to a folder first_experiment, type:

setwd("../../first_experiment")

You can always check you current working directory typing getwd (). (If you use R
app for Windows, you can set your directory by clicking the File menu: see Fig. 1; Mac
OS users — click the Misc menu on your R console). Call the function by typing stylo()
at the prompt and hitting enter. After a while, you should see a GUI box appear on
the screen. Change as many options as you need. Since there are multiple tabs in the
GUI, make sure you only click the OK button after you’ve set the parameters in all
the tabs. Shortly afterwards, you will see the names of the files processed appear in
the R console, followed by other (technical) information. Depending on the size of your
corpus, this step might take a few minutes. When the process is completed without
major errors, you will typically see a diagram on your screen; otherwise, a graphic file
(you can choose one or more format if you like) will be saved in your working directory
(at better resolution than the onscreen version, so use this for your publication), and
you can start exploring the other stylo() output files there.

4.3 Options available on GUI

As a first step, beginners should learn how to use the graphical user interface (GUI),
which allows you to control the script’s main parameters without having to tamper with
the actual code. However, if you do prefer to tamper with the code, you can call the
function in batch mode: stylo(gui=FALSE). In that case, before you start, you might
want to visit the help pages via typing the command help(stylo). Also, you should
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Figure 3: stylo() launched in its default mode: first tab on GUI

be familiar with additional options that can, or rather should, be passed as arguments;
they are listed on the margins of this document.

Whenever you use the GUI, each successful execution or “run” of the script will
generate a stylo_config.txt file (saved in your working folder) which you can review

(for instance, should you have forgotten the parameters you used in your last experiment).

The parameter settings specified in this file will be retrieved at each subsequent run of

the script, so that the user won’t have to respecify their favorite settings every time.

Please note that when you hover your cursor over the labels of each of the entries in
the GUI, tool tips will appear that will help you understand the GUI. In the following
sections we will discuss each of the different tabs in the stylo() GUIL

No matter if you decide using GUI or not, you can pass additional arguments from
command-line. If the graphic mode is on, these “new” values will appear in the GUI
and thus they will be still modifiable. Some examples include:

stylo(mfw.min=300, mfw.max=300, analyzed.features="c", ngram.size=3)

stylo(gui=FALSE, analysis.type="MDS", write.png.file=TRUE)
stylo(nfw.min=100, mfw.max=1000, mfw.incr=100, analysis.type="BCT")

4.3.1 Input

This is where you specify the format of your corpus (see 4.1 above for more details
about corpus preparation, and mind possible encoding issues). The available choices are:

e plain text: plain text files.
e xml: XML files; this option will remove all tags and TEI headers.

e xml (plays): XML files of plays; with this option, all tags, TEI headers, and
speakers’ names between <speaker>...</speaker> tags are removed.

e xml (no titles): XML contents only: all tags, TEI headers, and chapter/section
(sub)titles between <head>...</head> tags are removed.

e html: the option will attempt to remove HTML headers, menus, links and other
tags.

10

corpus.format=

"plain"

"yml"

"xml.drama"

"xml.notitles"

"html"



e UTF-8: if you use Linux or Mac, this option is immaterial; however, if your
operating system is Windows, then you need to set it depending whether your
dataset is encoded in Unicode (then check the option), or in ANSI (then leave it
unchecked).

4.3.2 Language

This setting makes sure that pronoun deletion (see below) works correctly. If you decide
not to remove pronouns from your corpus (which is known to improve authorship
attribution in some languages), this setting is immaterial (unless you are using English;
see immediately below).

e English: this setting makes sure that contractions (such as “don’t”) are not treated
as single words (thus “don’t” is understood as two separate items, “don” and “t”),
and that compound words (such as “topsy-turvy”) are not treated as one word
(thus “topsy-turvy” becomes “topsy” and “turvy”).

e English (contr.): this setting makes sure that contractions (such as “don’t”) are
treated as single words (thus “don’t” is understood as “don”t” and counted
separately), but compound words (such as “topsy-turvy”) are still not treated as
one word (thus “topsy-turvy” becomes “topsy” and “turvy”).

e English (ALL): this setting makes sure that contractions (such as “don’t”) are
treated as single words (thus “don’t” is understood as “don”t” and counted
separately), and that compound words (such as “topsy-turvy”) are treated as one
word (thus “topsy-turvy” becomes “topsy” turvy”).

e Latin: this setting makes sure that “v” and “u” are treated as discrete character
signs in Latin texts.

e Latin.corr: since some editions do not distinguish between “v” and “u”, this option

[}

provides a consistent conversion of both characters to “u” in each text.

e CJK: Chinese, Japanese and Korean scripts, provided that the input data is
encoded in Unicode.

e Other: non-Latin scripts: Hebrew, Arabic, Cyryllic, Coptic, Greek, Georgian, Latin
phonetic, so far. Make sure your input data is in Unicode!

Please do note that for all other languages, apostrophes do not join words and
compound (hyphenated) words are split. This is not the ideal solution and will be
addressed as soon as we get to it.

4.3.3 Features

In many established approaches to stylometry, the (relative) frequencies of the most

frequent words (MFW) in a corpus are used as the basis for multidimensional analyses.

It has been argued, however, that other features are also worth considering, especially
word and/or character n-grams. The general idea behind such n-grams is to combine a
string of individual items into a partially overlapping, consecutive sequences of n of these
individual items. Given a sample sentence “This is a simple example”, the character

2_grams (“bigramS”) are as fO].lOWS: “th”, “hi”, ttiSH, “S 777 [43 i”’ “isﬁ’ “S 77’ 13 a”’ tta 77,

[43 b [195)] [13 7

s”, “si”, “im”, “mp”, etc. The same sentence split into bigrams of words reads “this

11

encoding=
"UTF-8"
"native.enc"

corpus.lang=

"English"

"English.contr"

"English.all"

"Latin"

"Latin.corr"

"CJK"

"Other"
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Figure 4: stylo() GUI, the second tab: Features, MFW Settings, Culling, Various

”

is”, “is a”, “a simple”, “simple example”. It has been heavily debated in the secondary
literature whether the use of n-grams really increases the accuracy of stylometric tests
(Hoover, 2002, 2003, 2012; Koppel et al., 2009; Stamatatos, 2009; Eder, 2011; Alexis
et al., 2014). However, it has been shown (Eder, 2013) that character n-grams are
impressively robust when one deals with a “dirty” corpus (one with a high number of
misspelled characters, or one with bad OCR). The ideal combination of parameters in
this section is another bone of contention between scholars; in fact, Eder and Rybicki
(2013) maintain that this differs not only from language to language but also from one
collection of text to another.

e words: words are used as the unit. Naturally, the higher the n you specify, the
less repetitive your n-grams there will be, and this means poor statistics (data
sparseness).

e characters: characters are used as the unit.

e n-gram size: this is where you can specify the value of n for your n-grams. Certainly,
setting this option to 1 makes sure that individual words/chars will be used instead
of higher-order n-grams.; of course, single-letter counts do not seem like a good
idea.

e preserve case: normally, all the words from the input texts are turned into lowercase,
no matter if they are proper nouns or not — e.g. the sentence The family of Dashwood
had long been settled in sussex will be turned into the family of dashwood had
long been settled in sussex. In some situations, however, you might be interested
in preserving the case. That’s the option to do it.

e select files manually: normally, the script performs the analysis on all files in your
corpus subfolder. If this option is checked, a dialogue window will appear enabling
the user the make a selection of input files from the subfolder. Obviously, you can
achieve the same results by simply removing the unwanted texts from the corpus
subfolder. Again, note that this function will expect you to select at least two
different input files.

4.3.4 MFW settings

This is where you specify the size of the most-frequent-word list that will be used for
your analysis. Actually, the name is slightly misleading, since you are not at the mercy of

12

analyzed.features=

gt
nen

ngram.size=

<integer>

preserve.case=
TRUE | FALSE

[TBD]



“most frequent words” only. You can use most frequent word pairs (bigrams), character
sequences, etc. We keep the name “MFW?” because... Well, we don’t really remember
why we keep it; probably, there was no-one around to propose a better solution.

e Minimum: this setting determines how many words (or features) from the top of
the frequency list for the entire corpus will be used in your analysis in the first
(and possibly, only) run of the function. With a value of 100 for this parameter,
your analysis will be conducted on the 100 most frequent words (features) in the
entire corpus.

e Maximum: this setting determines how many words from the top of the word
frequency list for the entire corpus will be used in your analysis in the last (and
possibly, only) run of the function. Thus, a setting of 1000 results in your (final)
experiment being conducted on 1000 most frequent words in the entire corpus.
(This parameter setting is especially important when working with the bootstrap
consensus trees in stylo(), a procedure which involves running several analyses
in a row. See immediately below under “Increment”).

e Increment: this setting defines the value by which the value of Minimum will be
increased at each subsequent run of your analysis until it reaches the Maximum
value. Thus, a setting of 200 (at a Minimum of 100 and a Maximum of 1000)
provides for an analysis based on 100, 300, 500, 700 and 900 most frequent words.
(As above, this parameter setting is especially important when working with the
bootstrap consensus trees in stylo(), a procedure which involving running several
analyses in a row).

e Start at freq. rank: sometimes you might want to skip the very top of the frequency
list. With this parameter, you can specify how many words from the top of the
overall frequency rank list should be skipped. Normally, however, users will want
to set this at 1.

N.B. For all statistical procedures (see 4.3.6 below) except the Consensus Tree,
it is advisable to set Minimum and Maximum to the same value (this makes the
Increment setting immaterial), unless you want to produce a large series of cluster
analysis, multidimensional scaling or principal components analysis graphs in a row, for
instance to observe how/if the results change for various lengths of the MFW list.

4.3.5 Culling

“Culling” refers to the automatic manipulation of the wordlist (proposed by Hoover
2004a, 2004b). The culling values specify the degree to which words that do not appear
in all the texts of your corpus will be removed. Thus, a culling value of 20 indicates
that words that appear in at least 20% of the texts in the corpus will be considered
in the analysis. A culling setting of 0 means that no words will be removed; a culling
setting of 100 means that only those words will be used in the analysis that appear in
all texts of your corpus at least once.

e Minimum: this setting specifies the first (and possibly, only) culling setting in
your analysis (cf. the minimum MFW setting).

e Maximum: this setting specifies the last (and possibly, only) culling setting in
your analysis (cf. the maximum MFW setting). (This parameter setting is espe-
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Figure 5: stylo() GUI, the third tab: Statistics, Distances

cially important when working with the bootstrap consensus trees in stylo(), a
procedure which involves running several analyses in a row).

e Increment: this defines the increment by which the value of Minimum will be
increased at each subsequent run of your analysis until it reaches the Maximum
value. Thus a setting of 20 (at a Minimum of 0 and a Maximum of 100) provides
for an analysis using culling settings of 0, 20, 30, 60, 80 and 100. (This parameter
setting is especially important when working with the bootstrap consensus trees
in stylo(), a procedure which involves running several analyses in a row).

e List cutoff: Usually, it is recommended to cut off the tail of the overall wordlist; if
you do not want to cut the list and analyze vectors of thousands of words at once,
then the variable may be set to an absurdly big number (although this can be
computationally demanding for your machine). This setting is independent from
the culling procedure.

e Delete pronouns: (this setting too is independent of the culling procedure). If
this option is checked, make sure you have selected the correct language for your
corpus (see 4.3.2 above). This will select a list of pronouns for that language inside
the script. Advanced users can use this part of the tool to remove any words
they want. So far, we have pronoun lists for English, Dutch, Polish, Latin, French,
German, Spanish, Italian, and Hungarian.

N.B. As had been mentioned above, for all statistical procedures (see 4.3.6 below)
except consensus trees, it is advisable to set Minimum and Maximum to the same value
(this makes the Increment setting immaterial), unless you want to produce a large series
of cluster analysis, multidimensional scaling or principal components analysis graphs
etc. in a row.

4.3.6 Statistics

This is the very last moment to emphasize one important thing: the function stylo()
provides a bunch of unsupervised methods used in stylometry, such as principal compo-
nents analysis, multidimensional scaling or cluster analysis. The results are represented
either on a scatterplot, or a tree-like diagram (dendrogram); the last stage of the analysis
involves a human interpretation of the generated plots. The results obtained using these
techniques “speak for themselves”, which gives a practitioner an opportunity to notice
with the naked eye any peculiarities or unexpected behavior in the analyzed corpus. Also,
given a tree-like graphical representation of similarities between particular samples, one
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can easily interpret the results in terms of finding out which group of texts a disputable
sample belongs to. On the other hand, however, these methods cannot be wvalidated in
terms of an automatic verification of a given method’s reliability. Thus, if you feel you’d
better use one of machine-learning techiniques, refer to the funcion classify (), below.

e Cluster Analysis: Performs cluster analysis and produces a dendrogram, or a graph
showing hierarchical clustering of analyzed texts. This option makes sense if there
is only a single iteration (or just a few). This is achieved by setting the MFW
Minimum and Maximum to equal values, and doing the same for Culling Minimum
and Maximum.

e MDS: Multidimensional Scaling. This option makes sense if there is only a single
iteration (or just a few). This is achieved by setting the MFW Minimum and
Maximum to equal values, and doing the same for Culling Minimum and Maximum.

e PCA (cov.): Principal Component Analysis using a covariance matrix. This option
makes sense if there is only a single iteration (or just a few). This is achieved by
setting the MFW Minimum and Maximum to equal values, and doing the same
for Culling Minimum and Maximum.

e PCA (corr.): Principal Component Analysis using a correlation matrix (and this
is possibly the more reliable option of the two, at least for English). This option
makes sense if there is only a single iteration (or just a few). This is achieved by
setting the MFW Minimum and Maximum to equal values, and doing the same
for Culling Minimum and Maximum.

e Consensus Tree: this option will output a statistically justified “compromise”
between a number of virtual cluster analyses results for a variety of MFW and
Culling parameter values.

e Consensus strength: For Consensus Tree graphs, direct linkages between two texts
are made if the same link is made in a proportion of the underlying virtual cluster
analyses. The default setting of 0.5 means that such a linkage is made if it appears
in at least 50% of the cluster analyses. Legal values are 0.4 — 1. This setting is
immaterial for any other Statistics settings.

4.3.7 Distances

This is where the user can choose the statistical procedure used to analyze the distances
(i.e. the similarities and differences) between the frequency patterns of individual texts
in your corpus. Although this choice is far from trivial, some of the following measures
seem to be more suitable for linguistic purposes than others. On theoretical grounds,
Euclidean Distance and Manhattan Distance should be avoided in stylometry based on
word frequencies (unless the frequencies are normalized; see: Delta). Canberra Distance is
quite troublesome but effective e.g. for Latin; it is very sensitive to rare vocabulary, and
thus might be a good choice for inflected languages, with sparse frequencies (it should
be combined with careful culling settings and a limited number of MFWs taken into
analysis). For English, usually Classic Delta is a good choice: mathematically speaking
(Argamon, 2008), it is simply Manhattan distance applied to normalized (z-scored) word
frequencies. A theoretical explanation of the measures implemented in this function is
pending. The available distance measures are as follows:
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e Buclidean Distance: basic and the most “natural”. It is an obvious choice when "dist.euclidean"

your variables are similarly distributed. However, since word distributions are
not similar at any rate (e.g. compare the huge difference between the frequencies
of “the” and “dactyloscopy”), this distance measure is not appropriate to testing
vectors of dozens of most frequent words. Or, to be precise, it could be used to
assess less frequent (content) words. According to Zipf’s law, these words are
distributed more or less similarly in a corpus since, by being less common than
function words, they appear in the flattened sections of a Zipf curve.

Siam) = | 2 (Ai)? = (Bi)?|
i=1

where:

n = the number of MFWs (most frequent words),
A, B = texts being compared,

A; = the frequency of a given word ¢ in the text A,
B; = the frequency of a given word 7 in the text B.

e Manhattan Distance: obvious and well documented. It shares the pros and cons of "dist.manhattan"

Euclidean Distance. "

Sap) = >_|Ai — Bil

=1

e Classic Delta as introduced by Burrows (2002). Since this measure relies on z- "dist.delta"
scores — i.e. normalized word frequencies — it is dependent on the number of texts
analyzed and on a balance between these texts: if a corpus contains, say, a large
nuber of plays by Lope de Vega and only one play by Calderén de la Barca, the
final results might by biased.

Ai—pi  Bi—

o o

where:

n = the number of MFWs (most frequent words or other features),
A, B = texts being compared,

A; = the frequency of a given feature i in the text A,

B; = the frequency of a given feature ¢ in the text B,

u; = mean frequency of a given feature in the corpus,

o; = standard deviation of frequencies of a given feature.

Argamon (2008) showed that the above formula can be simplified algebraically:

e Argamon’s Linear Delta, or Euclidean distance applied to normalized (z-scored)
word frequencies (Argamon, 2008). The distance is sensitive to the number of "dist.argamon"

texts in a corpus.
)2
A(ap) = ’
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e Eder’s Delta: it is a modification of standard Burrows’s distance; it slightly
increases the weights of frequent words and rescales less frequent ones in order to
suppress discriminative strength of some random unfrequent words. The distance
was meant to be used with highly inflected languages. It is sensitive to the number
of texts in a corpus.

n

n—n; + 1)
X

where:
n; = the position of a given feature on a frequency list (i.e. its rank).

e Eder’s Simple: a type of normalization as simple as can be (independent on
the size of the corpus), intended to convert the implications of Zipf’s law. The
normalization used in this distance is so obvious and so widely-spread in exact
sciences that naming it “Eder’s Simple Distance” is an abuse, so to speak.

0(AB) =
=1

e Canberra Distance: sometimes amazingly good. It is very sensitive to differences
in rare vocabulary usage among authors. On the other hand, this can be a
disadvantage, since sensitiveness to minute differences in word occurrences also
means significant sensitiveness to noise. Last but not least, Canberra Distance is
very sensitive to the number of words (features) analyzed.

A - By
dam) = Ehm+wr

e Cosine Distance: a classical measure, introduced to this package in the version
6.3.:

Soam =1 B 2
(45 AN B] ¢2A2¢2A2

e [t is also possible to use any custom distance measure. This option is discussed
below, in the section 9.4.

4.3.8 Sampling

When the default setting of “No sampling” is checked, each of the texts in its entirety is
treated as a single sample. The second option, that of “Normal sampling”, performs the
analysis on equal-sized consecutive sections of each text, and the size is determined by
the setting immediately below. Eder (2015) suggests that even better attribution results
can be achieved with “Random sampling”, where samples are made up of words each
randomly selected from anywhere in the text (“bag of words”); here, too, the sample
size must be set below.
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Figure 7: stylo() GUI, the fourth tab: Output

4.3.9 Graphs

Do you want to display the graph on the screen? Do you want to write the graph directly
to a graphics file? Which format? If you’ve been thinking about any plots, these are
the options to fiddle with. You can display the graph on the screen and write to a file
(the latter will be done with much better quality). The produced files are saved in your
working directory. As has already been mentioned, the name of your working directory
is used both as the title on top of the graph (see 4.3.10 below) and as the name of the
graph files; some important parameter settings (for MFW list size, culling, pronoun
deletion, statistical method) are also placed on the graph and in the name of the file.
However, remember that if you perform another analysis with the same parameters on
a slightly modified corpus, this will overwrite the earlier graph.

e Onscreen: check this if you want to display the graph on the screen.
e PDF': check this to obtain a PDF file with your graph.
e JPG: check this to obtain your graph in JPEG format.

e SVG: check this to produce a SVG vector file (XML-based scalable image format).
Useful if you want to embed your plot in HTML code, or to edit it further with,
say, Inkscape.

e PNG: check this to obtain your graph in PNG format (probably the safest option
if you want publication-ready resolution).
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4.3.10 Plot area

Further graphic options. Here you can specify the dimensions of the plot area (expressed
in inches, yes, even though the makers of the package are all honest Continental
Europeans and usually think in centimeters), font size, thickness of the lines used to
plot the graphs, etc. Since it is usually hard to remember all the values, an additional
option is provided to reset the picture options — if this is checked, the remaining options
will be overwritten and the defaults restored.

e Set default: this is the above-mentioned “amnesia button”. If you fiddle too much plot.options.reset=

with different graphic settings and forget, say, the default size of scatterplots,
this option is exactly what you need. (Remember, however, that some computers
hate the “amnesia buttons”, HAL from 2001: A Space Oddyssey being the most
convincing caveat).

Plot height: self-evident. The valid units are inches.
Plot width: self-evident. The valid units are inches.

Font size: self-evident. The unit is “points” (a detailed explanation what type of
“points” it is and how they are related to “typographic points”, “Didot points”,
“Postscript points” etc. can be skipped here; the only thing worth noting is that
they are the same “points” as in popular office programs, like MS Office).

Line width: if you plan to re-scale your plot, you might also want to increase the
thickness of the lines in your graph. This value is expressed in R generic units
(1 is default).

Colors: when this option is checked, the script will automatically assign the same
colors to texts with the same first segment of their file names (the first string
ending in “_7”).

Grayscale: select this option to have automatic color coding (in greyscale). The
file names convention: see above. While the graphs become less pretty than when
colored, this might be your method of choice if the journal you’re planning to
publish in makes you pay for color illustrations their weight (or, rather, resolution)
in gold.

Black: select to have a black & white graph. No file naming convention is required
with this option.

Titles: if this is checked, the graphs will contain a main (top) title (based on
the name of your folder and your choice of the statistics option) and a subtitle
(bottom) showing the distance metric which you selected, as well as the MFW,
Culling, Feature and Consensus settings. If you don’t want to have the title decided
automatically, you need to pass an argument custom.graph.title.

TRUE | FALSE

plot.custom.height=
plot.custom.width=

plot.font.size=

<integer>

plot.line.thickness=
<integer>

colors.on.graphs=

"colors"

"grayscale"

"black"

titles.on.graphs=
TRUE | FALSE

custom.graph.title=
"Any text"

4.3.11 PCA/MDS

More graphic options. The following settings, however, apply to scatterplots only, i.e. to
the plots produced by principal component analysis and multidimensional scaling.

e Labels: to identify samples on MDS/PCA plots using their labels, or names, as
specified in filenames (see 4.1 above).

text.id.on.graphs=
"labels"
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e Points: instead of labels, use points to show the positions of the particular samples. "points"
This option might be helpful if you want to represent a large number of samples
on one plot.

e Both: in some cases, you might be interested to get precise positions of samples "both"
on a graph and to keep the samples’ labels on. This option pinpoints the exact
locations of the samples using points, and slightly offsets the labels (see the option
‘Label offset” immediately below).

e Margins: if you use particularly long samples’ names (labels) and/or simply want add.to.margins=
to add some blank space on your plot, set custom margin size (in percentage of <integer>
plot area). You can find out your best setting by trial and error.

e Label offset: set custom offset between label and point (in percentage of plot area). label.offset=
<integer>

4.3.12 PCA flavour

Even more graphic options. Should you want to use PCA, you can choose one of the pca.visual.flavour=
four visualization flavors.

e Classic: original PCA visualization using (colored, if applicable) sample names or "classic"
points.

e Loadings: display PCA feature (word etc.) loadings. This type of visualization "loadings"
is aimed to show the discriminative strength of particular features (e.g. words)
across two first principal components. Some visual similarity to popular “word
clouds” makes this approach attractive and comprehensive.

e Technical: technical greyscale PCA visualization, showing feature loadings as well "technical®
as a PC barplot. Potentially useful for greyscale printing in traditional publications.

e Symbols: select to display the samples in your PCA with a group symbol (instead "symbols"
of their entire name). Potentially useful when dealing with lots of samples.

4.3.13 Various

e Horizontal CA tree: select to have your cluster analysis graph oriented horizontally. dendrogram.lay-
Probably the better option for clarity, especially if there are a lot of samples to fit out.horizontal=
on one dendrogram. TRUE|FALSE

e Save distance table: save final distance table(s) in separate text file(s). In most save.distan-

cases, you will not need to use this option. ce.tables=
TRUE| FALSE
e Save features: save final feature (word, n-gram) list(s), e.g. the words actually save.analy-

used in the analysis. Use this option to have more control over the experiment: if zed.features=
you feel that your results are suspicious or too good to be true, you can open the TRUEIFALSE
generated file and check the features used.

e Save frequencies: this option gives you even more control: you can inspect frequen- save.analyzed.freqs=
cies of each word across the whole corpus. Switching this option saves frequency TRUE|FALSE
table(s) in separate text file(s).
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e Dump samples: if you still feel that your experiment in not supervised enough, dump.samples=
you migth be interested in a “post mortem” inspection of all the samples used: TRUE|FALSE
this option dumps the original samples (either whole texts, or chunks specified
using the “Sample size” option above) to an external file. Be aware, however, that
a corpus containig dozens of full-sized novels might produce a huge dump file.

5 classify()

This function performs a number of machine-learning algorighms of classification: Delta
(Burrows, 2002), k-nearest neighbors, support vectors machines, naive Bayes, and nearest
shrunken centroids (Jockers and Witten, 2010). Most of the options are derived from
the above-mentioned stylo() function.

Unlike explanatory methods as supported by stylo(), this approach involves two
stages of the analysis. In the first step, the traceable differences between samples produce
a set of rules, or a classifier, for discriminating authorial “uniqueness” in style. The
second step is of predictive nature — using the trained classifier, the machine assigns
other text samples to the authorial classes established by the classifier; any disputed or
anonymous samples will be assigned to one of the classes as well, provided that such a
classification is usually based on probabilistic grounds.

The procedure described above relies on an organized corpus of texts. Namely, the
clue is to divide all the available texts into two groups: primary (training) set and
secondary (test) set. The first set, being a collection of texts written by known authors
(“candidates”), serves as a sub-corpus for finding the best classifier, or discrimination
rules, while the second set is a pool of texts of known authors, anonymous texts,
disputed ones, and so on. The better the classifier, the more samples from the test
set are attributed (“guessed”) correctly and the more reliable the attribution of the
disputed samples.

The function writes the resulting authorship (or similarity) candidates to a logfile
(results.txt) in the current working directory.

5.1 Corpus preparation

Since machine-learning methods involve two sets of texts instead of one, you need to
create two subdirectories within your working directory. You don’t really need to name
this directory in any special way — no graphs will be generated and thus no titles on
graph will be used. However, the names of both subfolders are very important: the one
containing training samples should be named primary_set, and the test set should be
titled secondary_set (all file names are case sensitive!). In a usual authorship attibution
study, the training set will contain at least one text by each candidate author, preferably
one “representative” for his/her work, whatever that is (thus, for Goethe, something else
than Farbenlehre; for Dickens, probably not The Pickwick Papers). In the test set, you
usually put the anonymous or disputed samples you want to analyze, but in most cases
you also include a number of known texts to test the robustness of a particular method.
To keep the things simple: if you collect a number of texts written by women and men
in the training set, you should also put some other text written by both groups (to
provide “unseen” or “fresh” data) to the test set to see if they are correctly recognized.
A sample corpus of English writers might be split into two subsets as follows:

ABronte_Agnes.xml
Austen_Emma.xml
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Conrad_Nostromo.xml

ABronte_Tenant.xml
Austen_Pride.xml
Austen_Northanger.xml
Conrad_Lord.xml
Dickens_Pickwick.xml
Anonymous_Strange-novel.xml

The number of samples to be kept in these subfolders depends on the method you
are going to use. For Delta, support vector machines, and k-NN, the minimal number of
texts per class is 1 (as in the above example). Both naive Bayes and nearest shrunken
centroids require at least two samples per class to be put into the training set. (Certainly,
if you are short of texts, you can cheat: by putting a given sample twice into the training
set under two different names, e.g. Swift_Tub-1.txt, Swift_Tub-2.txt). However, it
is a commonly accepted fact that the more training data the better — whenever you
have enough texts available, put a good portion of them into the training set.

Another aspect of the above question is the nature of your stylometric test. If you
want to assess authorship, then a couple of texts per “candidate” should be fine, but if
you want to find a rule of gender differentiation, then you probably should collect quite
a lot of textual data written by men and women. And if you believe it is possible to
separate left-handed and right-handed writers, you need to take tons of training texts,
and even then your experiment will lack some methodological rigour (it is sometimes
called “the risk of modeling a noise”).

5.2 Calling the function

The function is evoked by the command classify().

5.3 Options

Most of the options are derived from the stylo() function. Refer to the section 4.3 for
further details.

5.3.1 Options inherited from stylo()

Input (4.3.1), Language (4.3.2), Features (4.3.3), MEW settings (4.3.4), Culling (4.3.5),
Delta Distances (4.3.7), Sampling (4.3.8), Output: various (4.3.13).

5.3.2 Statistics

e Delta: Burrows’s Delta. classification.method=
"delta"

e k-NN: k-nearest neighbor classification. "knn"

e SVM: support vector machines. "svm"

e NaiveBayes: naive Bayes classification. To use this method, you should have at "naivebayes"
least two texts of each class (author, genre, etc.) in the primary (training) set.

e NSC: nearest shrunken centroid classification. To use this method, you should "nsc"
have at least two texts of each class (author, genre, etc.) in the primary (training)
set.
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5.3.3 General

e ALL culling: the culling procedure (cf. 4.3.5) is based on the percentage of samples culling.of.all.
containing a given word. To compute this ratio, one might want to use the texts samples=
from the first set only, or from both sets. "TRUE | FALSE"

e ALL wordlists: the both tables of frequencies are build using the pre-prepared reference.wordlist.
word list of the whole primary set (default). Alternatively, one might want to ©f-all.samples=
prepare this list of both sets by activating this option. "TRUE|FALSE"

e ALL z-scores:: how the z-scores should be calculated. If the variable is set to z.scores.of.all.
FALSE, the z-scores are relying on the primary set only (this should be better in samples=
most cases; after all, this is the classical solution used by Burrows and Hoover). "TRUE|FALSE"
Otherwise, the scaling is based on all the values in the primary and the secondary
sets. (This option is applicable to Delta only).

5.3.4 SVM options

Support vector machines classification settings: refer to help (svm) from library(e1071)
for details.

e Linear: linear kernel of SVM; probably the best choice in stylometry, since the svm.kernel=
number of variables (e.g. MEWs) is many times bigger than the number of classes. "linear"

e Polynomial: polynomial kernel of SVM. "polymonial"

e Radial: radial kernel of SVM. "radial"

e Degree: parameter needed for kernel of type “polynomial” (default: 3). svm.degree=
<integer>

e Coef0: parameter needed for kernel of type “polynomial” (default: 0). svm. coef0=
<integer>

e Cost: cost of constraints violation (default: 1); it is the C-constant of the regular- gyp. cost=

ization term in the Lagrange formulation. <integer>

5.3.5 k-NN options

e k value: the k value in k-Nearest Neighbour algorithm, or number of neighbours x.value=
to be considered. Certainly, the bigger the number the better the performance, <integer>
but, on the other hand, to set this value to 3, you need to have at least three
samples per class in the training set. If you keep just one text per class in the
training set, the performance is ex definitione suboptimal.

e | value: minimum vote for definite decision, otherwise “doubt”. (More precisely, 1.value=
less than k — [ dissenting votes are allowed, even if k is increased by ties). <integer>

5.3.6 Output: general

e Misclassifications: here you can specify whether you want to list the misclassified final.ranking.of.
samples into the log file. Certainly, in most cases you will want to have them candidates=
listed. However, if you plan to perform a multi-iterated large-scale experiment to TRUEIFALSE
test performance of a given method, you will probably prefer to switch off all that
verbosity.
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e Count good guesses: report the number of correct guesses for each iteration
(written to the log file). To say the truth, this option is a bit obsolete, since using
classify() you are almost always interested in the number of correctly classified
samples.

e No. of candidates: final ranking of candidates is directed to a file. You may specify
the number of final ranking candidates to be displayed (at least 1). This option
works for Delta only.

6 rolling.delta(), rolling.classify()

The procedure “Rolling Delta”, supported by the function rolling.delta() is reminis-
cent of a number of earlier applications of the metric (e.g. van Dalen-Oskam and van
Zundert, 2007; Kestemont, 2010; Burrows, 2010). The general goal is to use the Delta
metric to reliably visualize stylistic shifts in texts, for instance in order to study the
stylistic evolution in texts, to detect plagiarism or to pinpoint authorial takeovers in
the case of collaborative authorship.

The first step involves a “windowing” procedure in which each reference text is
segmented into consecutive, equal-sized samples or “windows” (window.size parameter).
The samples are allowed to partially overlap (step.size parameter). If we specify a
window.size of 5,000 and a step.size of 100, for example, the first sample of a text
contains words 1-5,000, the second 101-5,100, the third sample 201-5,200, and so forth
(see 6.3.2 below). Like Delta, our procedure uses the relative frequencies of a (preferably
small) set of n words which were most frequent in the entire collection of reference texts.
Subsequently, we compute a representative centroid for each reference text that consists
of the mean relative frequency for each of the n words in the windows extracted from
the text, as well as the standard deviation.

We then proceed to the analysis of the test text. We divide it into windows too
and iteratively compute the difference in style (the Delta) between each test window
and each reference centroid. In order to calculate the Delta with the n most frequent
words we employ the following formula. Let C' be an author’s centroid and let W be the
window we wish to compare it to. For each of the n words, we calculate the absolute
difference between its average frequency in C' and its frequency in W. Next, we weigh
this difference using each word’s standard deviation in the centroid. (Words whose
frequencies display significant fluctuation in a reference text’s windows are thus assigned
a lower weight.) The final Delta is the summation of these n weighted differences.

n

ACT) =Y —|u(C) ~ (W)

i=1 "

After “rolling” through the test text we can plot the resulting series of Deltas for
each reference text in a graph. The relatively lower the Deltas for a given reference text,
the relatively more similar the style in the test windows — and vice versa (cf. Hoover,
2004b: 471). If the curve for a text would show a sudden drop at a given position, this
could be indicative of a stylistic change in the text (which might, for instance, be caused
by one author taking over from another. One can use vertical lines in the plot to mark

the position of certain events in the test text as an aid in interpreting the graph (e.g.

chapter beginnings).
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6.1 Corpus preparation

You will need two subfolders in your working directory: primary_set should contain
the test texts: the individual writings by each of the authors who collaborated on the
test text — the latter goes into the secondary_set subfolder (once again, the names are
case-sensitive). In the pilot study for this method (Rybicki et al., 2014), the primary
set was composed of individual writings by Joseph Conrad and individual writings
by Ford Madox Ford, such as, respectively, The Heart of Darkness and The Good
Soldier; the secondary set only contained a single text at a time: one of the texts
written in collaboration by the two writers, such as The Inheritors. To study another
Conrad/Madox collaboration, The Inheritors had to be removed from the secondary set
and replaced by, say, Romance.

6.2 Calling the function

The function is evoked by the command rolling.delta().

6.3 Options

While many of the options are derived from the main stylo() function — especially in
the “Input & Language”, “Statistics”, and “Output” tabs, some differences must be
emphasized here.

6.3.1 Features

Contrarily to this section in stylo(), MFW settings only use a single value (Maximum)
since only one analysis is performed, and the same is true of the Culling value.

6.3.2 Sampling

The “Slice length” parameter sets the size of the text “window” or of consecutive
samples cut out one by one from the test text. “Stepsize” controls the size of the overlap
between two consecutive windows. For the default settings, a slice length of 5,000 and a
stepsize of 1,000 takes the first 5,000 words from the beginning of the test text as the
first sample, the section from the 1001th word in the text to its 6,000th word, and so
forth. Beware of very small stepsize values: we have not yet seen a computer that would
not hang R at a setting of 1!

6.3.3 Colors

An additional tab has been added to control the colors of the curves for each training set
text. Two courses of action are advisable here. If you only want to differentiate the texts
by author, you might want to set a single color from the pull-down fields for that author’s
texts, and another for the texts by the second writer. “Color 1”7 sets the color for the
text that comes first alphabetically in the ordinary listing of filenames, “Color 2” colors
the second text, etc. Thus, to use the above examples, all texts by Conrad would precede
those by Ford, and conrad_heart.txt (for The Heart of Darkness) would precede
conrad_jim.txt (for Lord Jim), etc. The other alternative is to use different shades of
the same basic color for each writer so that the similarity between the particular sets
can be more visible. The colours in the pull-down fields can be replaced with other text
names of colors in R’s pallette; you can get a listing of these by invoking R’s colors()
command.
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7 oppose()

It performs a contrastive analysis between two given sets of texts, using Burrows’s Zeta
(2007) in its different flavors, including Craig’s extensions (Craig and Kinney, 2009).
Also, the Whitney-Wilcoxon procedure as introduced by Kilgariff (2001) is available.
The function generates a vector of words significantly preferred by a tested author, and
another vector containing the words significantly avoided.

7.1 Corpus preparation

Suppose you want to find out the characteristic words of men and women, and then to
see which of the anonymous books in a corpus might have been written by men, and
which by women. In order to do this, you put all the women into the primary_set
subfolder of your working directory, and all the men into the secondary_set folder,
and then you place the anonymous texts in the test_set subfolder (the test_set
folder is optional; the script will run if it is not there or if you are not interested in the
anonymous texts).

7.2 Calling the function

The function is evoked by the command oppose().

7.3 Options

o Text slice length (in words), the default is 10,000 words. This parameter refers to
the size of the samples into which each text is “sliced” in order to perform zeta.

e Text slice overlap (in words). The default, 0, means that the first sample will
contain words 1 to 10,000 in the text, the second sample 10,001 to 20,000, etc. If
you set it to 2000, the first sample will contain words 1 to 10,000 in the text, the
second sample 8001 to 18,000, etc. Beware of low values: setting it to 1 will result
in a huge number of samples and R might eventually crash.

e Rare occurrences threshold: the default, 2 prevents hapax legomena and dislegom-
ena from appearing in the resulting zeta wordlist file; 1 gets rid of just hapax
legomena, 10 makes sure only words that appear at least 11 times in the corpus
are included in the list.

o Filter threshold (default 0.1) gets rid of word of weak discrimination strength (it’s
like p, the degree of statistical significance, in various standard statistical texts).
The higher the number, the less words appear in the final wordlist. It does not
normally exceed 0.5. To quote Maciej Eder: “if the ‘craig.zeta’ method is selected,
you might probably want to filter out some words of weak discrimination strength.
Provided that 2 means the strongest positive difference and 0 the strongest negative
difference (Hoover, 2009), the values either just above or just below 1 are not
significant and thus can be (or rather should be) omitted. If chisquare method
was chosen, all the differences of p value below 0.05 were filtered out, in pure Zeta,
there is no a priori solution. Threshold 0.5 would filter out a vast majority of
words, threshold set to 1 would filter all the words in a corpus.”

e Method: we have 3 zeta flavors so far: Craig’s (as described by him and Hoover);
Eder’s (not documented yet, but basically derived from Canbera distance measure);
chi-square (not documented yet).
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e Output: self-evident, except that “Identify points” only works (if it does work)
with output set to “Onscreen”.

The script outputs two files: a list of words_preferred.txt, which are words
significantly preferred by the primary author(s); and a list of words_avoided.txt,
which are words significantly avoided by the primary author(s).

The graph plots the frequencies of both word categories, preferred in avoided, for
each sample into which the texts have been sliced; normally, primary set samples
(marked as circles; colors correspond to the authors of the texts from which they were
taken) should appear in the top left corner of the plot (high words preferred frequencies,
low words avoided frequencies), while the secondary set samples (marked as triangles)
should gather in the bottom right (low words preferred frequencies, high words avoided
frequencies). Samples from texts by authors in the test set are marked as crosses; if they
overlap with either the primary or the secondary set samples, this shows the stylistic
similarity. Also, a polygon marking the outside limit of the primary set samples, and
another one for the secondary set, are drawn on the graph. Of course, you can now
combine the words preferred and avoided files into a single wordlist.txt file and use
the stylo() function for better discrimination between two groups of texts.

8 Options unavailable on GUI

8.1 Cluster analysis linkage

e linkage: algorithm for establishing clusters in a dendrogram; choose one of the fol- 1inkage=
lowing linkage methods: "nj", "ward" (default), "single", "complete", "average",
"mcquitty", "median", "centroid".

8.2 Network analysis support

The package “stylo” does not produce any networks per se, however, it does generate
tables of edges/nodes (or, edges alone), using two Eder’s algorightms of establishing
connections between the nodes (Eder, forthcoming). The table can be loaded into Gephi
(https://gephi.org). To get such a table, invoke the function stylo() with an argument
network=TRUE, and optionally with some other arguments, as listed below. E.g.:

stylo(network=TRUE, network.type="undirected")

e network: an output file (or files) will be generated when this option is set TRUE, network=
if this is set FALSE, the options immediately below are immaterial. (Default: TRUEIFALSE
FALSE).

e network.tables: one of two flavors of output: either one table (edges), or two (edges network.tables=
and nodes). Choose “edges” (default), or “both”, respectively. Using both tables "edges"
instead of one allows you to edit the table of nodes in, say, Excel, in order to set ' °°t®"
some node attributes. When you use two tables, however, make sure you import
edges to Gephi first; also, make sure you uncheck (in Gephi) the option for creating
missing nodes.

e network.type: when “undirected” type of network is chosen (default), then the network.type=
connections from and to are counted together (summed into one stronger connec- "undirected"
tion). When "directed" network is chosen, then the incoming connections and "directed”
the outcoming ones are counted separately.
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Figure 8: 124 Greek texts represented as connected nodes of a network

e linked.neighbors: if this value is set to 1, then a link between a given sample and
its nearest neighbor is established; when it is set to 2, two neighbors are connected
(the nearest neighbor and the firs runner-up), etc. Default value is 3, which means
that the nearest neighbor and two runners-up are taken into consideration.

e edge.weights: the connections’ weights are always differentiated: the nearest neigh-
bor has the strongest link, then comes the first runner-up, and so forth. The
assigned weights might be "linear" = 1,2,3,...,n; "quadratic" = 1,4,9, ..., n?
or "log" (logarithmic) = log(1+ (1,2,3,...,n)).

Network analysis plots might be useful for visualizing textual relations in large
datasets. Particular texts can be represented as nodes of a network, and their explicit
relations as links between these nodes (Fig. 8). The procedure of linking is twofold
(details: Eder, forthcoming). One of the involved algorithms computes the distances
between analyzed texts, and establishes, for every single node, a strong connection to its
nearest neighbor (i.e. the most similar text), and weaker connections to the 1st and the
2nd runner-up (i.e. two texts that get ranked immediately after the nearest neighbor).
The second algorithm performs a large number of tests for similarity with different
number of features to be analyzed (e.g. 100, 200, 300, ..., 1,000 MFWs). Finally, all
the connections produced in particular “snapshots” are added, resulting in a consensus
network.

8.3 Undocumented arguments

o features
e frequencies
e training.frequencies

e test.frequencies
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e parsed.corpus

e training.corpus
e test.corpus

o Ccv

e cv.folds

e encoding

e relative.frequencies

9 Advanced topics

9.1 Batch mode

As mentioned somewhere in this document, it is possible to pass input data into stylo()
and classify() from inside R, without relying on any external files. Also, the final
results — apart from being plotted on screen and saved to the hard-drive — are accessible
as R objects. One can imagine a very complex stylometric experiment computed remotely
on a high-performance server without any file reading/writing involved. The next sections
provide an outline of such a pipeline design.

The datasets that can be piped into stylo() and classify() from other R functions
include: (1) pre-processed corpus, in terms of a list containing vectors of words (or
other countable units); see help(load.corpus.and.parse) for further details, see also
an example discussed in help(stylo), (2) table of word frequencies: an R matrix or
data frame with variables (words) formatted vertically as colums, and samples (texts)
ordered horizontally as rows, (3) words (MFWs) or other features to be analyzed: an
R vector containing the features as elements. In the case of classify(), two corpora
and/or two frequency tables are piped instead. The following executable toy example,
quoted after help(classify), shows how the training and the test corpus should be
passed in a pipelne:

# preparing a training corpus

tth = C("I].OW" s IIill , llamll , llalonell , lloll s "What“ , llall s “SlaVe" s llam" s ||ill)
tXt2 = C("What n s ||do" s ||y0ull s ||read" s ||myll s lllordll)

corpusTRAIN = list(txtl, txt2)

names (corpusTRAIN) = c("hamlet_samplel", "polonius_samplel")

# preparing a test corpus
tXt4 = C("tO", Ilbell, llorH’ llnotll, lltoll, llbell)
txts = c("though", "this", "be", "madness", "yet", "there", "is", "method")

txt6 = c("the", "rest", "is", "silence")
corpusTEST = list(txt4, txt5, txt6)
names (corpusTEST) = c("hamlet_sample2", "polonius_sample2",

"uncertain_1")

# launching the classification
classify(training.corpus = setTRAIN, test.corpus = setTEST)

29



One can pass the features to be analyzed (e.g. MFWSs) into stylo() or classify
in a similar way. Consider the following example:
my.selection.of.function.words = c("the", "and", "of", "in", "if",
"into", "within", "on", nuponu’ "since")
stylo(features = my.selection.of.function.words)

In any attempts to use existing tables of frequencies, one needs to remember that R
in general, and the package stylo in particular, accepts tabular datasets with variables
stored as columns. Certainly, this might be slightly confusing, since in other statistical
programs the variables are usually stored in rows. If your dataset is formatted as follows:

ABronte Austen CBronte Conrad Dickens
Agnes Emma Jane Lord Bleak

“the” 4.57 4.24 4.25 4.19 4.47
“to” 3.11 3.29 3.43 3.14 3.71
“and” 3.19 3 3.08 2.85 2.81
“of” 2.6 3 2.63 2.43 2.86
“I” 2.17 2.2 2.13 2.42 2.22

“a” 2.24 1.92 1.92 2.21 1.92

then you should do a tiny tweak before piping it further:

my.rotated.dataset = t(my.dataset)
stylo(frequencies = my.rotated.dataset)

For the sake of compatibility, the tables produced by the package stylo are always
saved in the transposed format — do not be confused, then.

When it comes to the final results stored as R objects, you should remember that
each function returns its value after evaluation. The main functions of the package
stylo do not clutter your screen with thousands of values, but the results are there
anyway. They are made invisible. To have an access to these values, pipe the function,
say, classify to a variable:

my.results = classify()

The variable my . results is a list containing a number of elements, including tables of
frequencies, classification results, and so forth. E.g. type my.results$frequencies. training.set
to get one of the tables.

Now, since the functions accept R objects as input data, and at the same time
their output is stored in R’s memory as a list of R objects, it is possible to connect
two functions “on the fly”. Consider an experiment involving the function oppose(),
aimed at extracting the most characteristic words for subcorpora A and B, which will
be later used to perform a cluster analysis on some other samples. The solution is
straightforward:

# launching ‘oppose’ to extract significant words
zeta.test.results = oppose()

# combining two lists of words into one vector
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setl = zeta.test.results$words.preferred
set2 zeta.test.results$words.avoided
words.from.zeta = c(setl, set2)

# using the above vector as features for ‘stylo’
stylo(features = words.from.zeta)

9.2 Custom splitting rule

When calling stylo, users can define their tokenization rules. The argument splitting.rule
takes the form of a regular expression which will be used to split input character strings
into discrete units, usually words. In obsolete versions of the package ‘stylo’, the de-
fault splitting sequence of chars was "[~[:alpha:]]+" on Mac/Linux, and "\\W+_"
on Windows. Two different splitting rules were used, because regular expressions are
not entirely platform-independent. In the version 0.5.6, then, assumed letter characters
have been indicated explicitly. Type help(txt.to.words) to see the actual chararacter
codes that were used as default rule.

If you are sure that your corpus contains clean spaces as word delimiters (i.e. there
is no punctuation), you can use a very simple splitting rule, such as the one listed below.
Even better, the rule might allow spaces, tab characters and newlines as word delimiters
(the second variant):

classify(splitting.rule="[:space:]+")
classify(splitting.rule="[ \t\n]+")

Some other regular expressions may include:

"[*\u0041-\u005A\u0061-\u007A] +" # (standard Latin-1)
" [~\u00CO0-\u00D6\u00D8-\u00F6\u00F8-\uOOFF]+" # (Western European)
"[*\u0100-\uO17F] +" # (Central European)

The custom splitting rule option can be also used if your input “texts” contain sequences
of POS-tags rather than words, e.g.:

N-voc ADJ N-gen N-gen N-nom N-gen ADJ-NUM ABBR N-nom ADJ ...
Then your splitting rule might look as follows:

" [~ [A-Za-z]-]+"

9.3 Splitting rule and batch mode combined

In many cases, the default functionalities provided by the library stylo can turn out
to be insufficient for your needs. Then, you can prepare your own corpus using some
of the functions provided by the library, then pipe it into other R functions and/or
packages, and take it back to stylo after relevant modifications. Let’s consider the
following example in which the aforementioned custom regular expression solution was
used. Suppose there is a collection of texts stored in a subdirectory ”corpus”. However,
these texts are tagged:

A11_NNP true_JJ histories_NNS contain_VBP instruction_NN ;_: though_RB
,—, in_IN some_DT ,_, the_DT treasure_NN may_MD be_VB hard_JJ to_TO
find_VB ,_, and_CC when_WRB found_VBN ,_,
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Suppose one wants do drop the lemmas and to get tags only: NNP JJ NNS VBP NN
RB IN DT DT NN MD VB JJ TO VB CC WRB VBN RB... It is possible to extract
the grammatical annotation via the function parse.pos.tags(), using the following
code:

# loading all input texts from the directory ‘corpus’:
my.raw.data = load.corpus(files = dir(), corpus.dir = "corpus")

# we invoke the function ‘parse.pos.tags’
my.cool.data = parse.pos.tags(my.raw.data, tagger = "stanford",
feature = "pos")

# now, we launch stylo() with an argument:
stylo(parsed.corpus = my.cool.data)

The above function is not supported by the older versions of stylo (ver. j0.6.2), but
it can be easily worked around:

# loading all input texts from the directory ‘corpus’:
my.raw.data = load.corpus(files = dir(), corpus.dir = "corpus")

# now, it’s time for some substitutions and regular expressions:
my.slightly.better.data = lapply(my.raw.data, gsub,
pattern = "[[:alpha:],.;’-]+_", replacement="")

# to get rid of punctuation marks, another regexp might be helpful:
my.acceptable.data = lapply(my.slightly.better.data, gsub,
pattern = "[[:punct:]]+", replacement = "")

# next, using the function ‘txt.to.words’ (from the "stylo" package)
# one can tokenize the whole corpus:
my.cool.data = lapply(my.acceptable.data, txt.to.words)

# the last stage is to launch the stylo() function with an argument:
stylo(parsed.corpus = my.cool.data)

Similarly, custom tables of frequencies can be build separately, and used in a form
of external R objects piped into stylo():

# external frequencies:

my.table = make.table.of.frequencies(my.cool.data, words = c("nn",
"jj","dt","prp") )

stylo(frequencies = my.table)

9.4 Custom similarity measures

The package stylo in ver. ;0.6.0 provides a socket for defining and plugging in custom
distance measures. Suppose you want to test the Cosine Delta (or, Wiirzburg Delta)
distance discussed by Jannidis, Schéch and Pielstrom (2015). Their measures is basically
a regular Cosine Distance applied to z-scored data. To use it with stylo, one has to
prepare a custom function that will compute the distance out of table of frequencies.
The following function does the job, even if it could be slighlty optimized:
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wurzburg.cosine = function(x)
# z-scoring the input matrix of frequencies
x = scale(x)
# computing cosine dissimilarity
y = as.dist( x %*% t(x) / (sqrt(rowSums(x~2) %*} t(rowSums(x"2)))) )
# then, turning it into cosine similarity
z=1-y
# getting the results
return(z)

Now, the code has to be typed (or copy-pasted) to the R console so that it is visible
for other functions. We are ready to use the usual functions, supplemented with an
additional argument:

stylo(distance.measure = "wurzburg.cosine")
classify(distance.measure = "wurzburg.cosine")

rolling.classify(distance.measure = "wurzburg.cosine")

Other possible applications include e.g. testing if the Entropy Distance outperforms
other similarity measures. The code for the similarity function is straightforward:

dist.entropy = function(x)
A=1t(t(x + 1) / colSums(x + 1))

B = t(t(log(x + 2)) / -(colSums(A * log(A))))
y = dist(B, method="manhattan")
return(y)

stylo(distance.measure = "dist.entropy")

Etc. etc. The are plethora of possible distance measures. The users are encouraged
to examine them all!

9.5 Large-scale stylometric tests

Suppose that one wants to conduct a large experiment: the goal is to perform multiple
runs with different lengths of the wordlist, increasing gradually the ‘start.at’ variable.
This option is not implemented in the package stylo. However, using the batch mode
it is just a few steps to success. Consider the following tailored script:

### the script begins ###
library(stylo)

# assume we want to perform a series of tests using 50 words

# and gradually moving the starting point on the wordlist

# e.g., from 100 to 1000 by 50 (i.e. for 100, 150, 200, 250, ... 1000)
# this is a vector of the start points we want to test:

where.to.start = seq(100,1000,50)
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for(current.start.point in where.to.start) {

HH
# CORE CODE:
# in each iteration, ‘stylo’ will be launched in batch mode
# the option "start.at" will be incremented
stylo(gui = FALSE,
display.on.screen = FALSE,
use.existing.freq.tables = TRUE,
corpus.lang = "English.all",
mfw.min = 50, mfw.max = 50,
start.at = current.start.point)
HHHHHHHARRR

# now, we want to get the table of distances
current.results = results.stylo$distance.table

# what about saving this table?

# first, we have to create a unique file name to prevent overwriting

# the same file in each iteration:

current.filename = paste("distances_starting_at_",
current.start.point, ".txt", sep="")

# now, it’s time to save the results in their files
write.table(file = current.filename, current.results)

# a short message on screen, followed by a newline char:
cat ("what about another stylometric test?\n")
### the script is done ###

10 Error messages and troubleshooting

[TBD)]
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