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chaotic and noisy oscillators.

SURFACE KINETIC ROUGHENING 

❖ Universality in growth processes and 
other non-equilibrium phenomena.

❖ Examples: Coffee-ring formation, 
growth of bacterial colonies, ice-flake 
deposition, thin-film production…

❖ Models: Discrete growth models and 
interfacial continuum equations, with 
thermal or quenched disorder.
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R. Lauter, A. Mitra & F. Marquardt, Phys. Rev. E 96, 012220 (2017) J. P. Moroney & P. R. Eastham, 
Phys. Rev. Research 3, 043092 (2021)

❖ Analogy recently explored in some specific contexts, including bosonic systems 
and routes out of synchronization.

❖ Mathematical connection between main models of phase oscillators and interfaces                                                    
(see, e. g., A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization, CUP, 2001).
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❖ We study the dynamical process whereby an oscillator lattice 
synchronizes for long times by a detailed analysis of this connection.

❖ Poorly studied: traditionally, the focus has been on threshold parameter 
values for the transition to synchronization, and its characterization.

❖ The synchronization process is endowed with universal features 
recently studied in the physics of surface kinetic roughening.

❖ In fact, both synchronization and kinetic roughening are instances of                
non-equilibrium criticality.

Main goal and brief summary of results
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N ∑N

i=j eiϕj
·ϕi = ωi + Kr sin(ψ − ϕi)

S. H. Strogatz, Physica D 143, 1 (2000)
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❖ Synchronized oscillators evolve at the same effective frequency (angular velocity).

❖ For generalizations such as the Kuramoto-Sakaguchi coupling

 Γ(ϕj − ϕi) = K sin(ϕj − ϕi + δ)

such frequency locking for  is the only possible type of synchronization. K > K*

❖ When the oscillators are at the sites of lattice of linear size , for example, in 1D:L

• For Kuramoto coupling ( ), , no synchronization for  
(Strogatz & Mirollo, Physica D 31, 143, 1988).

δ = 0 K* ∼ L L → ∞

• For  finite  for all , attributed to the lack of odd symmetry in                    
(Ostborn, Phys. Rev. E 70, 016120, 2004).

δ ≠ 0 K* L Γ
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❖ Dynamics of height   over substrate position .                                                               
Dominant terms preserving reasonable symmetries

h(x, t) x

                               ∂th = ν∇2h +
λ
2

(∇h)2 + η

❖ For thermal delta-correlated noise  this is the Kardar-Parisi-Zhang (KPZ) equation. η

❖ In the particular case , it is the (linear) Edwards-Wilkinson (EW) equation.                                   λ = 0

❖ The KPZ nonlinearity , 
local surface normal growth,  
breaks the up-down symmetry 
( ) of the EW equation.

(λ/2)(∇h)2

h → − h
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❖ The roughness (width)   is the standard observable.            W(L, t) ≡ ⟨[h(x, t) − h]2⟩1/2

❖ Dynamic correlation length .                                                                           
Heights correlated at smaller distances.                                                                                      

ξ(t) ∼ t1/z

❖ Saturation, : .                                                                                    
Growth, : , .

ξ(t) ∼ L W(L, t) ∼ Lα

ξ(t) ≪ L W(L, t) ∼ tβ β = α/z

❖ Apart from  and , universality classes characterized by PDF of fluctuations around 
average growth : Gaussian for EW class, Tracy-Widom (TW) for KPZ class.

α z
tβ

❖ Generic Scale Invariance (GSI): Similar to the critical dynamics of the Ising model, 
BUT it does not require setting parameters to specific (critical) values.

A. L. Barabási and H. E. Stanley,                      
Fractal Concepts in Surface Growth, CUP, 1995
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(quenched disorder depending only on ).

ω*(x) ≡ ω(x) + 2dΓ(0)
x

❖ Surface tension .                                                                                                          
Normal growth .

ν ≡ a2Γ(1)(0)
λ/2 ≡ a2Γ(2)(0)

❖ Slow spatial phase variation, as for , coarse-graining (ignore  terms). K > K* 𝒪(a4)

❖ Generically, columnar KPZ. If : columnar EW (Larkin model).                                                                                                                                                                Γ(2)(0) = 0 (λ = 0)

J. Soriano et al., Phys. Rev. Lett. 89, 026102 (2002)



Numerical results for a 1D Lattice of 
Kuramoto oscillators ( )δ = 0



General considerations and phenomenology



General considerations and phenomenology
❖ For , Kuramoto coupling , with odd symmetry 

, makes the model up-down symmetric ( ).
δ = 0 Γ(Δϕ) = K sin(Δϕ)

Γ(−Δϕ) = − Γ(Δϕ) ϕi → − ϕi



General considerations and phenomenology
❖ For , Kuramoto coupling , with odd symmetry 

, makes the model up-down symmetric ( ).
δ = 0 Γ(Δϕ) = K sin(Δϕ)

Γ(−Δϕ) = − Γ(Δϕ) ϕi → − ϕi

❖ The critical coupling scales as . We focus on .K* ∝ L K > K*



General considerations and phenomenology
❖ For , Kuramoto coupling , with odd symmetry 

, makes the model up-down symmetric ( ).
δ = 0 Γ(Δϕ) = K sin(Δϕ)

Γ(−Δϕ) = − Γ(Δϕ) ϕi → − ϕi

❖ The critical coupling scales as . We focus on .K* ∝ L K > K*

❖ Uniform displacement at average intrinsic frequency, which becomes eventually 
the effective frequency of all oscillators. 



General considerations and phenomenology
❖ For , Kuramoto coupling , with odd symmetry 

, makes the model up-down symmetric ( ).
δ = 0 Γ(Δϕ) = K sin(Δϕ)

Γ(−Δϕ) = − Γ(Δϕ) ϕi → − ϕi

❖ The critical coupling scales as . We focus on .K* ∝ L K > K*

❖ Uniform displacement at average intrinsic frequency, which becomes eventually 
the effective frequency of all oscillators. 

❖ .·ϕi = ωi + K[sin(ϕi+1−ϕi) + sin(ϕi−ϕi+1)] = ωi ≈ 0



General considerations and phenomenology
❖ For , Kuramoto coupling , with odd symmetry 

, makes the model up-down symmetric ( ).
δ = 0 Γ(Δϕ) = K sin(Δϕ)

Γ(−Δϕ) = − Γ(Δϕ) ϕi → − ϕi

❖ The critical coupling scales as . We focus on .K* ∝ L K > K*

❖ Uniform displacement at average intrinsic frequency, which becomes eventually 
the effective frequency of all oscillators. 

❖ .·ϕi = ωi + K[sin(ϕi+1−ϕi) + sin(ϕi−ϕi+1)] = ωi ≈ 0



Critical behavior: roughness and structure factor



Critical behavior: roughness and structure factor
❖ Continuum-limit: columnar EW equation ( )λ ∝ Γ(2)(0) = 0

        Sϕ(k, t) = ⟨ | ̂ϕ(k, t) |2 ⟩ =
(2π)d2σ

ν2k4 (1 − e−νk2t)
2



Critical behavior: roughness and structure factor
❖ Continuum-limit: columnar EW equation ( )λ ∝ Γ(2)(0) = 0

        Sϕ(k, t) = ⟨ | ̂ϕ(k, t) |2 ⟩ =
(2π)d2σ

ν2k4 (1 − e−νk2t)
2

❖ Exponents: .                                                                 
Super-rough (FV) anomalous scaling.

α = αs = 3/2, z = 2, αloc = 1



Critical behavior: roughness and structure factor
❖ Continuum-limit: columnar EW equation ( )λ ∝ Γ(2)(0) = 0

        Sϕ(k, t) = ⟨ | ̂ϕ(k, t) |2 ⟩ =
(2π)d2σ

ν2k4 (1 − e−νk2t)
2

❖ Exponents: .                                                                 
Super-rough (FV) anomalous scaling.

α = αs = 3/2, z = 2, αloc = 1



Critical behavior: roughness and structure factor
❖ Continuum-limit: columnar EW equation ( )λ ∝ Γ(2)(0) = 0

        Sϕ(k, t) = ⟨ | ̂ϕ(k, t) |2 ⟩ =
(2π)d2σ

ν2k4 (1 − e−νk2t)
2

❖ Exponents: .                                                                 
Super-rough (FV) anomalous scaling.

α = αs = 3/2, z = 2, αloc = 1

❖ Saturation of : synchronization. Wϕ(L, t)



Critical behavior: roughness and structure factor
❖ Continuum-limit: columnar EW equation ( )λ ∝ Γ(2)(0) = 0

        Sϕ(k, t) = ⟨ | ̂ϕ(k, t) |2 ⟩ =
(2π)d2σ

ν2k4 (1 − e−νk2t)
2

❖ Exponents: .                                                                 
Super-rough (FV) anomalous scaling.

α = αs = 3/2, z = 2, αloc = 1

❖ Saturation of : synchronization. Wϕ(L, t)



Numerical results for a 1D lattice of                                           
Kuramoto-Sakaguchi oscillators          

( )δ ≠ 0



General considerations and phenomenology



General considerations and phenomenology

❖ For , the Kuramoto-Sakaguchi coupling  is 
not odd, : the model is not up-down ( ) symmetric.

δ ≠ 0 Γ(ϕj − ϕi) = K sin(ϕj − ϕi + δ)
Γ(−Δϕ) ≠ − Γ(Δϕ) ϕ → − ϕ



General considerations and phenomenology

❖ For , the Kuramoto-Sakaguchi coupling  is 
not odd, : the model is not up-down ( ) symmetric.

δ ≠ 0 Γ(ϕj − ϕi) = K sin(ϕj − ϕi + δ)
Γ(−Δϕ) ≠ − Γ(Δϕ) ϕ → − ϕ

❖ The critical coupling  depends only weakly on the system size . K* L



General considerations and phenomenology

❖ For , the Kuramoto-Sakaguchi coupling  is 
not odd, : the model is not up-down ( ) symmetric.

δ ≠ 0 Γ(ϕj − ϕi) = K sin(ϕj − ϕi + δ)
Γ(−Δϕ) ≠ − Γ(Δϕ) ϕ → − ϕ

❖ The critical coupling  depends only weakly on the system size . K* L

❖
·ϕi = ωi + K[sin(ϕi+1−ϕi+δ)+sin(ϕi−ϕi+1+δ)−2 sin δ] = ωi − 2K sin δ (1−cos Δϕ)



General considerations and phenomenology

❖ For , the Kuramoto-Sakaguchi coupling  is 
not odd, : the model is not up-down ( ) symmetric.

δ ≠ 0 Γ(ϕj − ϕi) = K sin(ϕj − ϕi + δ)
Γ(−Δϕ) ≠ − Γ(Δϕ) ϕ → − ϕ

❖ The critical coupling  depends only weakly on the system size . K* L

❖
·ϕi = ωi + K[sin(ϕi+1−ϕi+δ)+sin(ϕi−ϕi+1+δ)−2 sin δ] = ωi − 2K sin δ (1−cos Δϕ)

❖ Deviation from the average of  with sign opposite to that of .g(ω) sin δ



General considerations and phenomenology

❖ For , the Kuramoto-Sakaguchi coupling  is 
not odd, : the model is not up-down ( ) symmetric.

δ ≠ 0 Γ(ϕj − ϕi) = K sin(ϕj − ϕi + δ)
Γ(−Δϕ) ≠ − Γ(Δϕ) ϕ → − ϕ

❖ The critical coupling  depends only weakly on the system size . K* L

❖
·ϕi = ωi + K[sin(ϕi+1−ϕi+δ)+sin(ϕi−ϕi+1+δ)−2 sin δ] = ωi − 2K sin δ (1−cos Δϕ)

❖ Deviation from the average of  with sign opposite to that of .g(ω) sin δ

❖ Larger slopes  lead to a larger effective frequency.Δϕ



Trajectories: phenomenological similarities



Trajectories: phenomenological similarities



Trajectories: phenomenological similarities

I. G. Szendro, J. M. López & M. A. Rodríguez,           
Phys. Rev. E 76, 011603 (2007)

KPZ equation with columnar noise 



Trajectories: phenomenological similarities

I. G. Szendro, J. M. López & M. A. Rodríguez,           
Phys. Rev. E 76, 011603 (2007)

KPZ equation with columnar noise 

Dynamics of driven-dissipative bosons 

J. P. Moroney & P. R. Eastham,          
Phys. Rev. Research 3, 043092 (2021)
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❖ PDF: Gaussian for , GOE-TW for .δ = 0 δ ≠ 0

❖ TW statistics: found in a wide class of classical and                                          
quantum systems with strongly correlated variables 
(G. Makey et al., Nat. Phys. 16, 795, 2020).

❖ Covariance               
(phase-phase correlations) of columnar EW ( )                   
obtained analytically, shown to be valid for all .

Cϕ(r, t) ≡ ⟨ϕ(x + r, t)ϕ(x, t)⟩ − ⟨ϕ̄(t)⟩2

δ = 0
δ
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Conclusions

❖ Synchronization is an instance of generic non-equilibrium criticality, with 
anomalous scaling forms studied in surface kinetic roughening.

❖ Kuramoto coupling: EW equation with columnar noise, super-rough scaling.              
Generally: KPZ equation with columnar noise, faceted scaling.                                              

❖ In the latter cases the fluctuations are governed by TW statistics, paradigmatic in 
the critical behaviour of low-dimensional strongly correlated systems.
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❖ Phase oscillators are idealized self-sustained oscillators…  BUT

❖ The scaling behavior of the KPZ equation with columnar noise as well as the TW 
PDF and Larkin covariances also describe the synchronization process of several 
(two-dimensional) limit-cycle oscillators. 

❖ Those undergoing a Hopf bifurcation typically have non-odd coupling forms in 
their phase-reduced dynamics… the Kuramoto (sine) coupling is exceptional

❖ Even far from the bifurcation point, some features appear to be quite robust.

❖ More details available (hopefully) soon on the arXiv…



Thank you!
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❖ , for an even distribution of intrinsic frequencies, 
, with zero mean.

·ϕi = ωi + ∑j ∈ nni
Γ(ϕj − ϕi)

g(−ω) = g(ω)

❖ Positions in oscillating medium , .x = (x1, x2, …, xd) ∈ ℝd ϕi → ϕ(x)

❖

with , canonical basis vector  and lattice constant .
∂tϕ(x, t) = ω(x) + ∑k∈ℕd

[Γ(ϕ(x + aek, t) − ϕ(x, t)) + Γ(ϕ(x − aek, t) − ϕ(x, t))]
ℕd = {1,2,…, d} ek a

❖ ∂tϕ(x, t)=ω(x)+2dΓ(0)+a2Γ(1)(0)∑k∈ℕd
∂2

kϕ(x, t)+a2Γ(2)(0)∑k∈ℕd
(∂kϕ(x, t))2+𝒪(a4)

❖ For a slow spatial phase variation, as occurs for  well into the 
synchronized regime, coarse-grained description:

K > K*

                              ∂tϕ(x, t) = ω*(x) + ν∇2ϕ(x, t) +
λ
2

[∇ϕ(x, t)]2


