Non-equilibrium criticality in the synchronization of lattices of self-sustained oscillators

Ricardo Gutiérrez and Rodolfo Cuerno

Complex System Interdisciplinary Group (GISC) Universidad Carlos III de Madrid, Spain

36th Marian Smoluchowski Symposium on Statistical Physics 24 September 2023, Kraków

Two branches of statistical and nonlinear physics

Two branches of statistical and nonlinear physics

SYNCHRONIZATION

- Pervasive form of emerging collective dynamics.
- <u>Examples</u>: Neurons, fireflies, applauding audiences, qubits, Josephson junctions, lasers...
- Models: Systems (including lattices and complex networks) of phase, limit-cycle, chaotic and noisy oscillators.

Two branches of statistical and nonlinear physics

SYNCHRONIZATION

- Pervasive form of emerging collective dynamics.
- <u>Examples:</u> Neurons, fireflies, applauding audiences, qubits, Josephson junctions, lasers...
- Models: Systems (including lattices and complex networks) of phase, limit-cycle, chaotic and noisy oscillators.

SURFACE KINETIC ROUGHENING

- Universality in growth processes and other non-equilibrium phenomena.
- <u>Examples:</u> Coffee-ring formation, growth of bacterial colonies, ice-flake deposition, thin-film production...
- * <u>Models:</u> Discrete growth models and interfacial continuum equations, with thermal or quenched disorder.

* Phase field $\phi(\mathbf{x}, t)$ treated as the height $h(\mathbf{x}, t)$ of an interface growing above $\mathbf{x} \in \mathbb{R}^d$ on a *d*-dimensional substrate.

* Phase field $\phi(\mathbf{x}, t)$ treated as the height $h(\mathbf{x}, t)$ of an interface growing above $\mathbf{x} \in \mathbb{R}^d$ on a *d*-dimensional substrate.

R. Lauter, A. Mitra & F. Marquardt, Phys. Rev. E 96, 012220 (2017)

★ Phase field $φ(\mathbf{x}, t)$ treated as the height *h*(**x**, *t*) of an interface growing above **x** ∈ ℝ^d on a *d*-dimensional substrate.

R. Lauter, A. Mitra & F. Marquardt, Phys. Rev. E 96, 012220 (2017)

J. P. Moroney & P. R. Eastham, Phys. Rev. Research 3, 043092 (2021)

★ Phase field $φ(\mathbf{x}, t)$ treated as the height *h*(**x**, *t*) of an interface growing above **x** ∈ ℝ^d on a *d*-dimensional substrate.

R. Lauter, A. Mitra & F. Marquardt, Phys. Rev. E 96, 012220 (2017)

J. P. Moroney & P. R. Eastham, Phys. Rev. Research 3, 043092 (2021)

* Analogy recently explored in some specific contexts, including bosonic systems and routes out of synchronization.

* Phase field $\phi(\mathbf{x}, t)$ treated as the height $h(\mathbf{x}, t)$ of an interface growing above $\mathbf{x} \in \mathbb{R}^d$ on a *d*-dimensional substrate.

10

θ) -

60

5

-60

60

R. Lauter, A. Mitra & F. Marquardt, Phys. Rev. E 96, 012220 (2017)

J. P. Moroney & P. R. Eastham, Phys. Rev. Research 3, 043092 (2021)

- Analogy recently explored in some specific contexts, including bosonic systems and routes out of synchronization.
- * Mathematical connection between main models of phase oscillators and interfaces (see, e. g., A. Pikovsky, M. Rosenblum and J. Kurths, *Synchronization*, CUP, 2001).

* We study the <u>dynamical process</u> whereby an oscillator lattice synchronizes for long times by a detailed analysis of this connection.

- * We study the <u>dynamical process</u> whereby an oscillator lattice synchronizes for long times by a detailed analysis of this connection.
- * Poorly studied: traditionally, the focus has been on threshold parameter values for the transition to synchronization, and its characterization.

- * We study the <u>dynamical process</u> whereby an oscillator lattice synchronizes for long times by a detailed analysis of this connection.
- * Poorly studied: traditionally, the focus has been on threshold parameter values for the transition to synchronization, and its characterization.
- * The synchronization process is endowed with <u>universal features</u> recently studied in the physics of surface kinetic roughening.

- We study the <u>dynamical process</u> whereby an oscillator lattice synchronizes for long times by a detailed analysis of this connection.
- * Poorly studied: traditionally, the focus has been on threshold parameter values for the transition to synchronization, and its characterization.
- * The synchronization process is endowed with <u>universal features</u> recently studied in the physics of surface kinetic roughening.
- * In fact, both synchronization and kinetic roughening are instances of <u>non-equilibrium criticality</u>.

Some background: synchronization of coupled oscillators

* Long-time dynamics of weakly coupled, nearly identical limit-cycle oscillators

$$\dot{\phi}_i = \omega_i + \frac{1}{N} \sum_{j=1}^N \Gamma(\phi_j - \phi_i), \quad i = 1, 2, ..., N$$

State given by $\phi_{i'}$ (random) intrinsic frequency $\omega_{i'}$ Γ smooth and 2π -periodic.

* Long-time dynamics of weakly coupled, nearly identical limit-cycle oscillators

$$\dot{\phi}_i = \omega_i + \frac{1}{N} \sum_{j=1}^N \Gamma(\phi_j - \phi_i), \quad i = 1, 2, ..., N$$

State given by $\phi_{i'}$ (random) intrinsic frequency $\omega_{i'}$ Γ smooth and 2π -periodic.

* <u>Kuramoto coupling</u>: all-to-all, sinusoidal, with strength $K \ge 0$

$$\Gamma(\phi_j - \phi_i) = K \sin(\phi_j - \phi_i)$$

* Long-time dynamics of weakly coupled, nearly identical limit-cycle oscillators

$$\dot{\phi}_i = \omega_i + \frac{1}{N} \sum_{j=1}^N \Gamma(\phi_j - \phi_i), \quad i = 1, 2, ..., N$$

State given by $\phi_{i'}$ (random) intrinsic frequency $\omega_{i'}$ Γ smooth and 2π -periodic.

* <u>Kuramoto coupling</u>: all-to-all, sinusoidal, with strength $K \ge 0$

$$\Gamma(\phi_j - \phi_i) = K \sin(\phi_j - \phi_i)$$

* In terms of $re^{i\psi} = \frac{1}{N} \sum_{i=j}^{N} e^{i\phi_j}$, exact mean-field equation $\dot{\phi}_i = \omega_i + Kr \sin(\psi - \phi_i)$

* Long-time dynamics of weakly coupled, nearly identical limit-cycle oscillators

$$\dot{\phi}_i = \omega_i + \frac{1}{N} \sum_{j=1}^N \Gamma(\phi_j - \phi_i), \quad i = 1, 2, ..., N$$

State given by $\phi_{i'}$ (random) intrinsic frequency $\omega_{i'}$ Γ smooth and 2π -periodic.

* <u>Kuramoto coupling</u>: all-to-all, sinusoidal, with strength $K \ge 0$

$$\Gamma(\phi_j - \phi_i) = K \sin(\phi_j - \phi_i)$$

* In terms of $re^{i\psi} = \frac{1}{N} \sum_{i=j}^{N} e^{i\phi_j}$, exact mean-field equation $\dot{\phi}_i = \omega_i + Kr \sin(\psi - \phi_i)$

S. H. Strogatz, Physica D 143, 1 (2000)

* Synchronized oscillators evolve at the same <u>effective frequency</u> (angular velocity).

- * Synchronized oscillators evolve at the same <u>effective frequency</u> (angular velocity).
- * For generalizations such as the <u>Kuramoto-Sakaguchi coupling</u>

$$\Gamma(\phi_j - \phi_i) = K \sin(\phi_j - \phi_i + \delta)$$

such <u>frequency locking</u> for $K > K^*$ is the only possible type of synchronization.

- * Synchronized oscillators evolve at the same <u>effective frequency</u> (angular velocity).
- * For generalizations such as the <u>Kuramoto-Sakaguchi coupling</u>

$$\Gamma(\phi_j - \phi_i) = K \sin(\phi_j - \phi_i + \delta)$$

such <u>frequency locking</u> for $K > K^*$ is the only possible type of synchronization.

* When the oscillators are at the sites of lattice of linear size *L*, for example, in 1D:

- * Synchronized oscillators evolve at the same <u>effective frequency</u> (angular velocity).
- * For generalizations such as the Kuramoto-Sakaguchi coupling

$$\Gamma(\phi_j - \phi_i) = K \sin(\phi_j - \phi_i + \delta)$$

such <u>frequency locking</u> for $K > K^*$ is the only possible type of synchronization.

- * When the oscillators are at the sites of lattice of linear size *L*, for example, in 1D:
 - For Kuramoto coupling ($\delta = 0$), $K^* \sim \sqrt{L}$, no synchronization for $L \to \infty$ (Strogatz & Mirollo, Physica D 31, 143, 1988).

- * Synchronized oscillators evolve at the same <u>effective frequency</u> (angular velocity).
- * For generalizations such as the Kuramoto-Sakaguchi coupling

$$\Gamma(\phi_j - \phi_i) = K \sin(\phi_j - \phi_i + \delta)$$

such <u>frequency locking</u> for $K > K^*$ is the only possible type of synchronization.

- * When the oscillators are at the sites of lattice of linear size *L*, for example, in 1D:
 - For Kuramoto coupling ($\delta = 0$), $K^* \sim \sqrt{L}$, no synchronization for $L \to \infty$ (Strogatz & Mirollo, Physica D 31, 143, 1988).
 - For δ ≠ 0 finite K* for all L, attributed to the lack of odd symmetry in Γ (Ostborn, Phys. Rev. E 70, 016120, 2004).

Some background: surface kinetic roughening

Dynamics of height *h*(**x**, *t*) over substrate position **x**.
Dominant terms preserving reasonable symmetries

$$\partial_t h = \nu \, \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \eta$$

* Dynamics of height $h(\mathbf{x}, t)$ over substrate position \mathbf{x} . Dominant terms preserving reasonable symmetries

$$\partial_t h = \nu \, \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \eta$$

* For thermal delta-correlated noise η this is the Kardar-Parisi-Zhang (KPZ) equation.

* Dynamics of height $h(\mathbf{x}, t)$ over substrate position \mathbf{x} . Dominant terms preserving reasonable symmetries

$$\partial_t h = \nu \, \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \eta$$

- * For thermal delta-correlated noise η this is the Kardar-Parisi-Zhang (KPZ) equation.
- * In the particular case $\lambda = 0$, it is the (linear) Edwards-Wilkinson (EW) equation.

* Dynamics of height $h(\mathbf{x}, t)$ over substrate position \mathbf{x} . Dominant terms preserving reasonable symmetries

$$\partial_t h = \nu \, \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \eta$$

- * For thermal delta-correlated noise η this is the Kardar-Parisi-Zhang (KPZ) equation.
- * In the particular case $\lambda = 0$, it is the (linear) Edwards-Wilkinson (EW) equation.

The KPZ nonlinearity $(\lambda/2)(\nabla h)^2$, local surface normal growth, breaks the up-down symmetry $(h \rightarrow -h)$ of the EW equation.

A. L. Barabási and H. E. Stanley, *Fractal Concepts in Surface Growth*, CUP, 1995

Generic Scale Invariance

Generic Scale Invariance

* The roughness (width) $W(L, t) \equiv \langle [h(\mathbf{x}, t) - \overline{h}]^2 \rangle^{1/2}$ is the standard observable.

Generic Scale Invariance

- * The roughness (width) $W(L, t) \equiv \langle [h(\mathbf{x}, t) \overline{h}]^2 \rangle^{1/2}$ is the standard observable.
- * Dynamic correlation length $\xi(t) \sim t^{1/z}$. Heights correlated at smaller distances.
Generic Scale Invariance

- * The roughness (width) $W(L, t) \equiv \langle \overline{[h(\mathbf{x}, t) \overline{h}]^2} \rangle^{1/2}$ is the standard observable.
- * Dynamic correlation length $\xi(t) \sim t^{1/z}$. Heights correlated at smaller distances.
- * Saturation, $\xi(t) \sim L$: $W(L, t) \sim L^{\alpha}$. Growth, $\xi(t) \ll L$: $W(L, t) \sim t^{\beta}$, $\beta = \alpha/z$.

A. L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth, CUP, 1995

Generic Scale Invariance

- * The roughness (width) $W(L, t) \equiv \langle [h(\mathbf{x}, t) \overline{h}]^2 \rangle^{1/2}$ is the standard observable.
- * Dynamic correlation length $\xi(t) \sim t^{1/z}$. Heights correlated at smaller distances.
- * Saturation, $\xi(t) \sim L$: $W(L, t) \sim L^{\alpha}$. Growth, $\xi(t) \ll L$: $W(L, t) \sim t^{\beta}$, $\beta = \alpha/z$.

A. L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth, CUP, 1995

* Apart from α and z, universality classes characterized by PDF of fluctuations around average growth t^{β} : Gaussian for EW class, Tracy-Widom (TW) for KPZ class.

Generic Scale Invariance

- * The roughness (width) $W(L, t) \equiv \langle [h(\mathbf{x}, t) \overline{h}]^2 \rangle^{1/2}$ is the standard observable.
- * Dynamic correlation length $\xi(t) \sim t^{1/z}$. Heights correlated at smaller distances.
- * Saturation, $\xi(t) \sim L$: $W(L, t) \sim L^{\alpha}$. Growth, $\xi(t) \ll L$: $W(L, t) \sim t^{\beta}$, $\beta = \alpha/z$.

A. L. Barabási and H. E. Stanley, *Fractal Concepts in Surface Growth*, CUP, 1995

- * Apart from α and z, universality classes characterized by PDF of fluctuations around average growth t^{β} : Gaussian for EW class, Tracy-Widom (TW) for KPZ class.
- * <u>Generic Scale Invariance (GSI)</u>: Similar to the critical dynamics of the Ising model, BUT it does not require setting parameters to specific (critical) values.

Continuum limit of a system of phase oscillators on a lattice

* $\dot{\phi}_i = \omega_i + \sum_{j \in nn_i} \Gamma(\phi_j - \phi_i)$, for $\omega_i \sim g(\omega)$, with zero mean and $g(-\omega) = g(\omega)$.

* $\dot{\phi}_i = \omega_i + \sum_{j \in nn_i} \Gamma(\phi_j - \phi_i)$, for $\omega_i \sim g(\omega)$, with zero mean and $g(-\omega) = g(\omega)$.

* Oscillators at sites of a *d*-dimensional lattice. Taylor-expanding in the spacing *a*

$$\partial_t \phi(\mathbf{x}, t) = \omega^*(\mathbf{x}) + \nu \nabla^2 \phi(\mathbf{x}, t) + \frac{\lambda}{2} [\nabla \phi(\mathbf{x}, t)]^2 + \mathcal{O}(a^4)$$

* $\dot{\phi}_i = \omega_i + \sum_{j \in nn_i} \Gamma(\phi_j - \phi_i)$, for $\omega_i \sim g(\omega)$, with zero mean and $g(-\omega) = g(\omega)$.

* Oscillators at sites of a *d*-dimensional lattice. Taylor-expanding in the spacing *a*

$$\partial_t \phi(\mathbf{x}, t) = \omega^*(\mathbf{x}) + \nu \nabla^2 \phi(\mathbf{x}, t) + \frac{\lambda}{2} [\nabla \phi(\mathbf{x}, t)]^2 + \mathcal{O}(a^4)$$

* <u>Columnar noise</u> $\omega^*(\mathbf{x}) \equiv \omega(\mathbf{x}) + 2d\Gamma(0)$ (quenched disorder depending only on **x**).

J. Soriano et al., Phys. Rev. Lett. 89, 026102 (2002)

* $\dot{\phi}_i = \omega_i + \sum_{j \in nn_i} \Gamma(\phi_j - \phi_i)$, for $\omega_i \sim g(\omega)$, with zero mean and $g(-\omega) = g(\omega)$.

* Oscillators at sites of a *d*-dimensional lattice. Taylor-expanding in the spacing *a*

$$\partial_t \phi(\mathbf{x}, t) = \omega^*(\mathbf{x}) + \nu \nabla^2 \phi(\mathbf{x}, t) + \frac{\lambda}{2} [\nabla \phi(\mathbf{x}, t)]^2 + \mathcal{O}(a^4)$$

- * <u>Columnar noise</u> $\omega^*(\mathbf{x}) \equiv \omega(\mathbf{x}) + 2d\Gamma(0)$ (quenched disorder depending only on **x**).
- * Surface tension $\nu \equiv a^2 \Gamma^{(1)}(0)$. Normal growth $\lambda/2 \equiv a^2 \Gamma^{(2)}(0)$.

J. Soriano et al., Phys. Rev. Lett. 89, 026102 (2002)

* $\dot{\phi}_i = \omega_i + \sum_{j \in nn_i} \Gamma(\phi_j - \phi_i)$, for $\omega_i \sim g(\omega)$, with zero mean and $g(-\omega) = g(\omega)$.

* Oscillators at sites of a *d*-dimensional lattice. Taylor-expanding in the spacing *a*

$$\partial_t \phi(\mathbf{x}, t) = \omega^*(\mathbf{x}) + \nu \nabla^2 \phi(\mathbf{x}, t) + \frac{\lambda}{2} [\nabla \phi(\mathbf{x}, t)]^2 + \mathcal{O}(a^4)$$

- * <u>Columnar noise</u> $\omega^*(\mathbf{x}) \equiv \omega(\mathbf{x}) + 2d\Gamma(0)$ (quenched disorder depending only on **x**).
- * Surface tension $\nu \equiv a^2 \Gamma^{(1)}(0)$. Normal growth $\lambda/2 \equiv a^2 \Gamma^{(2)}(0)$.

J. Soriano et al., Phys. Rev. Lett. 89, 026102 (2002)

* Slow spatial phase variation, as for $K > K^*$, coarse-graining (ignore $\mathcal{O}(a^4)$ terms).

* $\dot{\phi}_i = \omega_i + \sum_{j \in nn_i} \Gamma(\phi_j - \phi_i)$, for $\omega_i \sim g(\omega)$, with zero mean and $g(-\omega) = g(\omega)$.

* Oscillators at sites of a *d*-dimensional lattice. Taylor-expanding in the spacing *a*

$$\partial_t \phi(\mathbf{x}, t) = \omega^*(\mathbf{x}) + \nu \nabla^2 \phi(\mathbf{x}, t) + \frac{\lambda}{2} [\nabla \phi(\mathbf{x}, t)]^2 + \mathcal{O}(a^4)$$

- * <u>Columnar noise</u> $\omega^*(\mathbf{x}) \equiv \omega(\mathbf{x}) + 2d\Gamma(0)$ (quenched disorder depending only on **x**).
- * Surface tension $\nu \equiv a^2 \Gamma^{(1)}(0)$. Normal growth $\lambda/2 \equiv a^2 \Gamma^{(2)}(0)$.

J. Soriano et al., Phys. Rev. Lett. 89, 026102 (2002)

- * Slow spatial phase variation, as for $K > K^*$, coarse-graining (ignore $\mathcal{O}(a^4)$ terms).
- * Generically, columnar KPZ. If $\Gamma^{(2)}(0) = 0$ ($\lambda = 0$): columnar EW (Larkin model).

Numerical results for a 1D Lattice of Kuramoto oscillators ($\delta = 0$)

* For $\delta = 0$, Kuramoto coupling $\Gamma(\Delta \phi) = K \sin(\Delta \phi)$, with odd symmetry $\Gamma(-\Delta \phi) = -\Gamma(\Delta \phi)$, makes the model up-down symmetric $(\phi_i \rightarrow -\phi_i)$.

- * For $\delta = 0$, Kuramoto coupling $\Gamma(\Delta \phi) = K \sin(\Delta \phi)$, with odd symmetry $\Gamma(-\Delta \phi) = -\Gamma(\Delta \phi)$, makes the model up-down symmetric $(\phi_i \rightarrow -\phi_i)$.
- * The critical coupling scales as $K^* \propto \sqrt{L}$. We focus on $K > K^*$.

- * For $\delta = 0$, Kuramoto coupling $\Gamma(\Delta \phi) = K \sin(\Delta \phi)$, with odd symmetry $\Gamma(-\Delta \phi) = -\Gamma(\Delta \phi)$, makes the model up-down symmetric $(\phi_i \rightarrow -\phi_i)$.
- * The critical coupling scales as $K^* \propto \sqrt{L}$. We focus on $K > K^*$.
- * Uniform displacement at average intrinsic frequency, which becomes eventually the effective frequency of all oscillators.

- * For $\delta = 0$, Kuramoto coupling $\Gamma(\Delta \phi) = K \sin(\Delta \phi)$, with odd symmetry $\Gamma(-\Delta \phi) = -\Gamma(\Delta \phi)$, makes the model up-down symmetric $(\phi_i \rightarrow -\phi_i)$.
- * The critical coupling scales as $K^* \propto \sqrt{L}$. We focus on $K > K^*$.
- * Uniform displacement at average intrinsic frequency, which becomes eventually the effective frequency of all oscillators.

*
$$\overline{\dot{\phi}_i} = \overline{\omega_i} + K \overline{[\sin(\phi_{i+1} - \phi_i) + \sin(\phi_i - \phi_{i+1})]} = \overline{\omega_i} \approx 0.$$

- * For $\delta = 0$, Kuramoto coupling $\Gamma(\Delta \phi) = K \sin(\Delta \phi)$, with odd symmetry $\Gamma(-\Delta \phi) = -\Gamma(\Delta \phi)$, makes the model up-down symmetric $(\phi_i \rightarrow -\phi_i)$.
- * The critical coupling scales as $K^* \propto \sqrt{L}$. We focus on $K > K^*$.
- * Uniform displacement at average intrinsic frequency, which becomes eventually the effective frequency of all oscillators.

*
$$\overline{\dot{\phi}_i} = \overline{\omega_i} + K \overline{[\sin(\phi_{i+1} - \phi_i) + \sin(\phi_i - \phi_{i+1})]} = \overline{\omega_i} \approx 0.$$

* Continuum-limit: columnar EW equation ($\lambda \propto \Gamma^{(2)}(0) = 0$)

$$S_{\phi}(\mathbf{k},t) = \langle |\hat{\phi}(\mathbf{k},t)|^{2} \rangle = \frac{(2\pi)^{d} 2\sigma}{\nu^{2} k^{4}} \left(1 - e^{-\nu k^{2} t}\right)^{2}$$

* Continuum-limit: columnar EW equation ($\lambda \propto \Gamma^{(2)}(0) = 0$)

$$S_{\phi}(\mathbf{k},t) = \langle |\hat{\phi}(\mathbf{k},t)|^2 \rangle = \frac{(2\pi)^d 2\sigma}{\nu^2 k^4} \left(1 - e^{-\nu k^2 t}\right)^2$$

* Exponents: $\alpha = \alpha_s = 3/2$, z = 2, $\alpha_{loc} = 1$. Super-rough (FV) anomalous scaling.

* Continuum-limit: columnar EW equation ($\lambda \propto \Gamma^{(2)}(0) = 0$)

$$S_{\phi}(\mathbf{k},t) = \langle |\hat{\phi}(\mathbf{k},t)|^2 \rangle = \frac{(2\pi)^d 2\sigma}{\nu^2 k^4} \left(1 - e^{-\nu k^2 t}\right)^2$$

* Exponents: $\alpha = \alpha_s = 3/2$, z = 2, $\alpha_{loc} = 1$. Super-rough (FV) anomalous scaling.

* Continuum-limit: columnar EW equation ($\lambda \propto \Gamma^{(2)}(0) = 0$)

$$S_{\phi}(\mathbf{k},t) = \langle |\hat{\phi}(\mathbf{k},t)|^2 \rangle = \frac{(2\pi)^d 2\sigma}{\nu^2 k^4} \left(1 - e^{-\nu k^2 t}\right)^2$$

- * Exponents: $\alpha = \alpha_s = 3/2$, z = 2, $\alpha_{loc} = 1$. Super-rough (FV) anomalous scaling.
- * Saturation of $W_{\phi}(L, t)$: synchronization.

* Continuum-limit: columnar EW equation ($\lambda \propto \Gamma^{(2)}(0) = 0$)

$$S_{\phi}(\mathbf{k},t) = \langle |\hat{\phi}(\mathbf{k},t)|^2 \rangle = \frac{(2\pi)^d 2\sigma}{\nu^2 k^4} \left(1 - e^{-\nu k^2 t}\right)^2$$

- * Exponents: $\alpha = \alpha_s = 3/2$, z = 2, $\alpha_{loc} = 1$. Super-rough (FV) anomalous scaling.
- * Saturation of $W_{\phi}(L, t)$: synchronization.

Numerical results for a 1D lattice of Kuramoto-Sakaguchi oscillators $(\delta \neq 0)$

* For $\delta \neq 0$, the Kuramoto-Sakaguchi coupling $\Gamma(\phi_j - \phi_i) = K \sin(\phi_j - \phi_i + \delta)$ is not odd, $\Gamma(-\Delta \phi) \neq -\Gamma(\Delta \phi)$: the model is not up-down ($\phi \rightarrow -\phi$) symmetric.

- * For $\delta \neq 0$, the Kuramoto-Sakaguchi coupling $\Gamma(\phi_j \phi_i) = K \sin(\phi_j \phi_i + \delta)$ is not odd, $\Gamma(-\Delta \phi) \neq -\Gamma(\Delta \phi)$: the model is not up-down ($\phi \rightarrow -\phi$) symmetric.
- * The critical coupling *K** depends only weakly on the system size *L*.

- * For $\delta \neq 0$, the Kuramoto-Sakaguchi coupling $\Gamma(\phi_j \phi_i) = K \sin(\phi_j \phi_i + \delta)$ is not odd, $\Gamma(-\Delta \phi) \neq -\Gamma(\Delta \phi)$: the model is not up-down ($\phi \rightarrow -\phi$) symmetric.
- * The critical coupling *K** depends only weakly on the system size *L*.

*
$$\overline{\dot{\phi}_i} = \overline{\omega_i} + K[\overline{\sin(\phi_{i+1} - \phi_i + \delta)} + \sin(\phi_i - \phi_{i+1} + \delta)] - 2\sin\delta] = \overline{\omega_i} - 2K\sin\delta\left(1 - \overline{\cos\Delta\phi}\right)$$

- * For $\delta \neq 0$, the Kuramoto-Sakaguchi coupling $\Gamma(\phi_j \phi_i) = K \sin(\phi_j \phi_i + \delta)$ is not odd, $\Gamma(-\Delta \phi) \neq -\Gamma(\Delta \phi)$: the model is not up-down ($\phi \rightarrow -\phi$) symmetric.
- * The critical coupling *K** depends only weakly on the system size *L*.

*
$$\overline{\dot{\phi}_i} = \overline{\omega_i} + K[\overline{\sin(\phi_{i+1} - \phi_i + \delta)} + \sin(\phi_i - \phi_{i+1} + \delta)] - 2\sin\delta] = \overline{\omega_i} - 2K\sin\delta\left(1 - \overline{\cos\Delta\phi}\right)$$

* Deviation from the average of $g(\omega)$ with sign opposite to that of sin δ .

- * For $\delta \neq 0$, the Kuramoto-Sakaguchi coupling $\Gamma(\phi_j \phi_i) = K \sin(\phi_j \phi_i + \delta)$ is not odd, $\Gamma(-\Delta \phi) \neq -\Gamma(\Delta \phi)$: the model is not up-down ($\phi \rightarrow -\phi$) symmetric.
- * The critical coupling *K** depends only weakly on the system size *L*.

*
$$\overline{\dot{\phi}_i} = \overline{\omega_i} + K[\overline{\sin(\phi_{i+1} - \phi_i + \delta)} + \sin(\phi_i - \phi_{i+1} + \delta)] - 2\sin\delta] = \overline{\omega_i} - 2K\sin\delta\left(1 - \overline{\cos\Delta\phi}\right)$$

* Deviation from the average of $g(\omega)$ with sign opposite to that of $\sin \delta$.

* Larger slopes $\Delta \phi$ lead to a larger effective frequency.

KPZ equation with columnar noise

I. G. Szendro, J. M. López & M. A. Rodríguez, Phys. Rev. E 76, 011603 (2007)

KPZ equation with columnar noise

I. G. Szendro, J. M. López & M. A. Rodríguez, Phys. Rev. E 76, 011603 (2007)

Dynamics of driven-dissipative bosons

J. P. Moroney & P. R. Eastham, Phys. Rev. Research 3, 043092 (2021)

* Continuum limit: columnar KPZ equation.

- * Continuum limit: columnar KPZ equation.
- * Up-down symmetry broken by nonlinearity.

- * Continuum limit: columnar KPZ equation.
- * Up-down symmetry broken by nonlinearity.

- * Continuum limit: columnar KPZ equation.
- * Up-down symmetry broken by nonlinearity.

* PDF: Gaussian for $\delta = 0$, GOE-TW for $\delta \neq 0$.

- * PDF: Gaussian for $\delta = 0$, GOE-TW for $\delta \neq 0$.
- TW statistics: found in a wide class of classical and quantum systems with strongly correlated variables (G. Makey *et al.*, Nat. Phys. 16, 795, 2020).

- PDF: Gaussian for $\delta = 0$, GOE-TW for $\delta \neq 0$.
- TW statistics: found in a wide class of classical and quantum systems with strongly correlated variables (G. Makey *et al.*, Nat. Phys. 16, 795, 2020).

* Covariance $C_{\phi}(\mathbf{r}, t) \equiv \langle \overline{\phi}(\mathbf{x} + \mathbf{r}, t)\phi(\mathbf{x}, t) \rangle - \langle \overline{\phi}(t) \rangle^2$ (phase-phase correlations) of columnar EW ($\delta = 0$) obtained analytically, shown to be valid for all δ .

Conclusions and future work

* Synchronization is an instance of generic non-equilibrium criticality, with anomalous scaling forms studied in surface kinetic roughening.

* Synchronization is an instance of generic non-equilibrium criticality, with anomalous scaling forms studied in surface kinetic roughening.

Kuramoto coupling: EW equation with columnar noise, super-rough scaling.
Generally: KPZ equation with columnar noise, faceted scaling.

 Synchronization is an instance of generic non-equilibrium criticality, with anomalous scaling forms studied in surface kinetic roughening.

Kuramoto coupling: EW equation with columnar noise, super-rough scaling.
Generally: KPZ equation with columnar noise, faceted scaling.

* In the latter cases the fluctuations are governed by TW statistics, paradigmatic in the critical behaviour of low-dimensional strongly correlated systems.

* Phase oscillators are idealized self-sustained oscillators... BUT

- * Phase oscillators are idealized self-sustained oscillators... BUT
- The scaling behavior of the KPZ equation with columnar noise as well as the TW PDF and Larkin covariances also describe the synchronization process of several (two-dimensional) limit-cycle oscillators.

- * Phase oscillators are idealized self-sustained oscillators... BUT
- The scaling behavior of the KPZ equation with columnar noise as well as the TW PDF and Larkin covariances also describe the synchronization process of several (two-dimensional) limit-cycle oscillators.
- * Those undergoing a Hopf bifurcation typically have non-odd coupling forms in their phase-reduced dynamics... the Kuramoto (sine) coupling is exceptional

- * Phase oscillators are idealized self-sustained oscillators... BUT
- The scaling behavior of the KPZ equation with columnar noise as well as the TW PDF and Larkin covariances also describe the synchronization process of several (two-dimensional) limit-cycle oscillators.
- * Those undergoing a Hopf bifurcation typically have non-odd coupling forms in their phase-reduced dynamics... the Kuramoto (sine) coupling is exceptional
- * Even far from the bifurcation point, some features appear to be quite robust.

- * Phase oscillators are idealized self-sustained oscillators... BUT
- The scaling behavior of the KPZ equation with columnar noise as well as the TW PDF and Larkin covariances also describe the synchronization process of several (two-dimensional) limit-cycle oscillators.
- * Those undergoing a Hopf bifurcation typically have non-odd coupling forms in their phase-reduced dynamics... the Kuramoto (sine) coupling is exceptional
- * Even far from the bifurcation point, some features appear to be quite robust.
- * More details available (hopefully) soon on the arXiv...

Thank you!

Physical Review Research 5, 023047 (2023)

Funding: PID2021-123969NB-I00, PID2021-128970OAI00

* $\dot{\phi}_i = \omega_i + \sum_{j \in nn_i} \Gamma(\phi_j - \phi_i)$, for an even distribution of intrinsic frequencies, $g(-\omega) = g(\omega)$, with zero mean.

* $\dot{\phi}_i = \omega_i + \sum_{j \in nn_i} \Gamma(\phi_j - \phi_i)$, for an even distribution of intrinsic frequencies, $g(-\omega) = g(\omega)$, with zero mean.

* Positions in oscillating medium $\mathbf{x} = (x_1, x_2, ..., x_d) \in \mathbb{R}^d, \phi_i \to \phi(\mathbf{x}).$

* $\dot{\phi}_i = \omega_i + \sum_{j \in nn_i} \Gamma(\phi_j - \phi_i)$, for an even distribution of intrinsic frequencies, $g(-\omega) = g(\omega)$, with zero mean.

- * Positions in oscillating medium $\mathbf{x} = (x_1, x_2, ..., x_d) \in \mathbb{R}^d, \phi_i \to \phi(\mathbf{x}).$
- * $\partial_t \phi(\mathbf{x}, t) = \omega(\mathbf{x}) + \sum_{k \in \mathbb{N}_d} \left[\Gamma(\phi(\mathbf{x} + a\mathbf{e}_k, t) \phi(\mathbf{x}, t)) + \Gamma(\phi(\mathbf{x} a\mathbf{e}_k, t) \phi(\mathbf{x}, t)) \right]$ with $\mathbb{N}_d = \{1, 2, ..., d\}$, canonical basis vector \mathbf{e}_k and lattice constant a.

* $\dot{\phi}_i = \omega_i + \sum_{j \in nn_i} \Gamma(\phi_j - \phi_i)$, for an even distribution of intrinsic frequencies, $g(-\omega) = g(\omega)$, with zero mean.

- * Positions in oscillating medium $\mathbf{x} = (x_1, x_2, ..., x_d) \in \mathbb{R}^d, \phi_i \to \phi(\mathbf{x}).$
- * $\partial_t \phi(\mathbf{x}, t) = \omega(\mathbf{x}) + \sum_{k \in \mathbb{N}_d} \left[\Gamma(\phi(\mathbf{x} + a\mathbf{e}_k, t) \phi(\mathbf{x}, t)) + \Gamma(\phi(\mathbf{x} a\mathbf{e}_k, t) \phi(\mathbf{x}, t)) \right]$ with $\mathbb{N}_d = \{1, 2, ..., d\}$, canonical basis vector \mathbf{e}_k and lattice constant a.

* $\dot{\phi}_i = \omega_i + \sum_{j \in nn_i} \Gamma(\phi_j - \phi_i)$, for an even distribution of intrinsic frequencies, $g(-\omega) = g(\omega)$, with zero mean.

- * Positions in oscillating medium $\mathbf{x} = (x_1, x_2, ..., x_d) \in \mathbb{R}^d, \phi_i \to \phi(\mathbf{x}).$
- * $\partial_t \phi(\mathbf{x}, t) = \omega(\mathbf{x}) + \sum_{k \in \mathbb{N}_d} \left[\Gamma(\phi(\mathbf{x} + a\mathbf{e}_k, t) \phi(\mathbf{x}, t)) + \Gamma(\phi(\mathbf{x} a\mathbf{e}_k, t) \phi(\mathbf{x}, t)) \right]$ with $\mathbb{N}_d = \{1, 2, ..., d\}$, canonical basis vector \mathbf{e}_k and lattice constant a.

$$\partial_t \phi(\mathbf{x},t) = \omega(\mathbf{x}) + 2d\Gamma(0) + a^2 \Gamma^{(1)}(0) \sum_{k \in \mathbb{N}_d} \partial_k^2 \phi(\mathbf{x},t) + a^2 \Gamma^{(2)}(0) \sum_{k \in \mathbb{N}_d} (\partial_k \phi(\mathbf{x},t))^2 + \mathcal{O}(a^4)$$

 For a slow spatial phase variation, as occurs for K > K* well into the synchronized regime, coarse-grained description:

$$\partial_t \phi(\mathbf{x}, t) = \omega^*(\mathbf{x}) + \nu \nabla^2 \phi(\mathbf{x}, t) + \frac{\lambda}{2} [\nabla \phi(\mathbf{x}, t)]^2$$