Maximally entangled proton and charged hadron multiplicity in Deep Inelastic Scattering

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Krzysztof Kutak
Based on
Eur.Phys.J.C 82 (2022) 2, 111
M. Hentschinski, K. Kutak

Eur.Phys.J.C 82 (2022) 12, 1147
M. Hentschinski, K.Kutak, R. Straka

Arxiv:2305.03069
H. Hentschinski, D. Kharzeev. K. Kutak, Z. Tu

Maximally entangled proton and charged hadron multiplicity in Deep Inelastic Scattering and Diffractive Deep Inelastic Scattering

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Krzysztof Kutak
Based on
Eur.Phys.J.C 82 (2022) 2, 111
M. Hentschinski, K. Kutak

Eur.Phys.J.C 82 (2022) 12, 1147
M. Hentschinski, K.Kutak, R. Straka

Arxiv:2305.03069
H. Hentschinski, D. Kharzeev. K. Kutak, Z. Tu

Motivation for studies of EE

- bounds and properties of EE may provide some new insight on behavior of pdfs
- links to other areas (thermodynamics, gravity, quantum information, conformal field theory)
- Interesting in context of parton saturation and thermalization problem of Quark Gluon Plasma Various approaches to entropy in the low x limit: entropy of gluon density, thermodynamic entropy, momentum space entanglement, coordinate space entanglement, Wehrl entropy,...

Boltzman and von Neuman entropy formulas reminder

The entropy S of macrostate is given by the log of number W of distinct microstates that compose it

$$
S=-\sum_{i=1}^{W} p(i) \ln p(i) \quad \text { Gibbs entropy }
$$

For uniform distribution $\quad p(i)=\frac{1}{W} \quad$ the entropy is maximal Boltzmann entropy

$$
S=\ln W
$$

Since partons are introduced as the microscopic constituents that compose the macroscopic state of the proton, it is natural to evaluate the corresponding entropy or entropy corresponding to parton density.

But proton as a whole is a pure state and the von Neuman
K. Kutak '11, Peschanski'12
A. Kovner, M. Lublinsky '15 entropy is 0 . Can one get any nontrivial result?
For pure state (one state) density matrix is: For mixed state i.e. classical statistical mixture

$$
\begin{aligned}
\rho & =|\psi\rangle\langle\psi| \\
S_{V N} & =-\operatorname{Tr}[\rho \ln \rho]=-1 \ln 1=0
\end{aligned}
$$

$$
\rho=\sum p(i)\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

$$
S_{V N} \neq 0
$$

Entanglement entropy in DIS - the idea

The composite system is described by
$\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

$$
\begin{aligned}
& \left|\Psi_{A B}\right\rangle \text { in } A \cap B \quad \begin{array}{l}
\text { physical state in A } \\
\text { physical state in B }
\end{array} \\
& \left|\Psi_{A B}\right\rangle=\sum_{i, j} c_{i j}\left|\varphi_{i}^{A}\right\rangle \otimes\left|\varphi_{j}^{B}\right\rangle
\end{aligned}
$$

entangled
if the product can not be expressed as separable product state

$$
\left|\Psi_{A B}\right\rangle=\sum_{i, j} c_{i j}\left|\varphi_{i}^{A}\right\rangle \otimes\left|\varphi_{j}^{B}\right\rangle
$$

separable
if the product can be expressed as separable product state

$$
\left|\Psi_{A B}\right\rangle=\left|\varphi^{A}\right\rangle \otimes\left|\varphi^{B}\right\rangle
$$

\mathcal{H}_{B} of dimension n_{B}.
\mathcal{H}_{A} of dimension n_{A}
Kharzeev, Levin '17

Schmidt decomposition allows to

See also

Dumitru,Kovner,Skokov'23

$$
\left|\Psi_{A B}\right\rangle=\sum \alpha_{n}\left|\Psi_{n}^{A}\right\rangle\left|\Psi_{n}^{B}\right\rangle _\quad \begin{gathered}
\text { orthonormal states belonging to A } \\
\text { orthonormal states bolonging to B }
\end{gathered}
$$

Entanglement entropy in DIS - the idea

$$
\left|\Psi_{A B}\right\rangle=\sum_{n} \alpha_{n}\left|\Psi_{n}^{A}\right\rangle\left|\Psi_{n}^{B}\right\rangle
$$

proton's rest frame

$$
\rho_{A}=\operatorname{tr}_{B} \rho_{A B}=\sum \alpha_{n}^{2}\left|\Psi_{n}^{A}\right\rangle\left\langle\Psi_{n}^{A}\right|
$$

$\alpha_{n}^{2} \equiv p_{n} \quad$ probability of state with n partons or dipoles

$$
S=-\sum_{n} p_{n} \ln p_{n}
$$

"entropy results from the entanglement between the regions A and B, and can thus be interpreted as the entanglement entropy. Entropy of region A is the same as entropy in region B."

Partonic, dipole cascade $\quad p_{n}=P_{n}$

$$
\begin{aligned}
& \frac{d P_{n}(Y)}{d Y}=-\lambda n P_{n}(Y)+(n-1) \lambda P_{n-1}(Y) \\
& P_{n}(Y)=e^{-\lambda Y}\left(1-e^{-\lambda Y}\right)^{n-1}
\end{aligned}
$$

set of partons is described by set of dipoles with fixed sizes, Y is rapidity and is related to energy

Mueller 95, Lublinsky, Levin ‘03 depletion of the probability to find n dipoles due to the splitting into $(n+1)$ dipoles.
$S=-\sum_{n} p_{n} \ln p_{n}$
the growth due to the splitting of $(\mathrm{n}-1)$
$S(Y)=\ln \left(e^{\lambda Y}-1\right)+e^{\lambda Y} \ln \left(\frac{1}{1-e^{-\lambda Y}}\right)$ dipoles into n dipoles.

See also Kovner, Levin, Lublinsky, JHEP 05 (2022) 019;

Assumption

$$
x g(x)=\langle n\rangle
$$

Kharzeev, Levin '17
See for in $1+1$ density matrix and $2+1$ dimensional case inLiu, Nowak, Zahed '22 See talk by Y. Liu

$$
S(x)=\ln (x g(x))
$$

$$
S\left(x, Q^{2}\right) \approx \ln \left(x g\left(x, Q^{2}\right)\right)
$$

KL entropy formula - interpretation

$$
S(x)=\ln (x g(x))
$$

$$
P_{n}(Y)=e^{-\lambda Y}\left(1-e^{-\lambda Y}\right)^{n-1}
$$

At low x partonic microstates have equal probabilities.
In this equipartitioned state the entropy is maximal - the partonic state at small x is maximally entangled.

Entanglement entropy - calculation and measurement

For DIS at high energies, this entanglement entropy can be calculated using

$$
S\left(x, Q^{2}\right)=\ln \left\langle n\left(\ln \frac{1}{x}, Q\right)\right\rangle
$$

$$
S_{\text {hadron }}=\sum P(N) \ln P(N)
$$

The charged particle multiplicity distribution is measured in either the current fragmentation region or the target fragmentation region.

Fraction of events with charged hadron. Measurement performed in rapidity bins.

Gluon and quark distribution

$$
\left\langle n\left(\ln \frac{1}{x}, Q\right)\right\rangle=x g(x, Q)+x \Sigma(x, Q)
$$

In the linear regime obeys BFKL equation. In our calculations we use NLO BFKL with kinematical improvements and running coupling. The gluon density has been fitted to F_{2} data (exact kinematics was used)
Hentschinski, Sabio-Vera, Salas.
Phys.Rev.D 87 (2013) 7, 076005
Phys.Rev.Lett. 110 (2013) 4, 041601

See also Kharzeev and Levin Phys. Rev. D 104, 031503 (2021)

We calculate the sea quarks distribution using

$$
x \Sigma(x, Q)=P_{q g}(Q, \mathbf{k}) \otimes \mathcal{F}\left(x, \mathbf{k}^{2}\right)
$$

$$
x g(x, Q)=\int_{0}^{Q^{2}} d \mathbf{k}^{2} \mathcal{F}\left(x, \mathbf{k}^{2}\right)
$$

Other methods for resummation:
KMS (Kwiecinski, Martin, Stasto);
CCSS (Colferai, Ciafaloni, Staśto, Salam)

Transverse momentum dependent splitting function

Gluon distribution

NLO BFKL with collinear resummation

$$
\begin{gathered}
\mathcal{F}\left(x, \boldsymbol{k}^{2}, Q\right)=\frac{1}{\boldsymbol{k}^{2}} \int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty} \frac{d \gamma}{2 \pi i} \hat{g}\left(x, \frac{Q^{2}}{Q_{0}^{2}}, \gamma\right)\left(\frac{\boldsymbol{k}^{2}}{Q_{0}^{2}}\right)^{\gamma} \\
\hat{g}\left(x, \frac{Q^{2}}{Q_{0}^{2}} \gamma\right)=\frac{\mathcal{C} \cdot \Gamma(\delta-\gamma)}{\pi \Gamma(\delta)}\left(\left(\frac{1}{x}\right)^{\chi(\gamma, Q, Q)}\right)\left\{1+\frac{\bar{\alpha}_{s}^{2} \beta_{0} \chi_{0}(\gamma)}{8 N_{c}} \log \left(\frac{1}{x}\right)\left[-\psi(\delta-\gamma)+\log \frac{Q^{2}}{Q_{0}^{2}}-\partial_{\gamma}\right]\right\} \\
\text { the low } \mathrm{x} \text { growth }
\end{gathered}
$$

Proton structure function from HSS fit

F_{2} data description

Proton structure function from HSS fit

F_{2} data description

Results

Hint that the general idea works. Gluon dominates over quarks. One has to also take into account that only charged hadrons were measured.

Results

Hint that the general idea works. Gluon dominates over quarks. One has to also take into account that only charged hadrons were measured i.e 2/3 of partons contribute

Results

NNPDF $31 \rightarrow$ DGLAP
NNPDF 31sx \rightarrow DGLAP + low x resummation

Low x resummation is essential

HSS gluon density used i.e. NLO BFKL + kinematical Improvements
Hentschinski, Sabio-Vera, Salas. Phys.Rev.D 87 (2013) 7, 076005
Phys.Rev.Lett. 110 (2013) 4, 041601

Large uncertainities of pdfs. In this study we did not take them into account.

Dipoles and mechanism of entanglement


```
segments - dipoles, color singlets maximally entangled states
red circle - resolved area defined by photon
```

entanglement arises because of dipoles that are partially in the red circle and partially in blue.

The broken dipoles contribute to final state hadron multiplicity and entropy of proton

If we go to lower x we have more and more dipoles that cross the red line and entanglement grows
"Entanglement of predictions arises from the fact that the two bodies at some earlier time from in the true sense one system that is were interacting and have left behind choices on each other."

E. Schrodinger

Large scales - description

Dipole gluon density with nonlinearity-x depend.

small kT rcBK

$$
\begin{aligned}
\mathcal{F}\left(x, k^{2}\right) & =\frac{N_{c} k^{2} S_{\perp}}{8 \pi^{2} \alpha_{s}} \int d r^{2}(1-N(r, x)) J_{0}\left(r^{2} k^{2}\right) \\
\mathcal{F}\left(x, k^{2}\right) & =\frac{N_{c} S_{\perp}}{\alpha_{s} 8 \pi^{2}} \frac{k^{2}}{Q_{S}^{2}} e^{-k^{2} / Q_{s}^{2}}
\end{aligned}
$$

Similar plots in
KS gluon i.e. $\mathrm{BK}+$ kinematical corrections
hep-ph/0703068
KK PhD thesis

Small scales - prediction

See also Hagivara, Hatta, Xiao ' 18

The genaralized KL model is used and entropy saturates in this approach and Nowak, Liu, Zahed '22

Integrated gluon and entropy

$\lim _{Q^{2} \gg Q_{s}^{2}} S\left(x, Q^{2}\right)=\ln \left(S_{\perp} Q_{s}^{2}(x)\right)+\ln \frac{N_{c}}{8 \alpha_{s} \pi^{2}}=\lambda \ln \frac{1}{x}+$ const $\lim _{Q^{2} \ll Q_{s}^{2}} S\left(x, Q^{2}\right)=\ln \left(\frac{S_{\perp} Q^{4}}{Q_{s}^{2}(x)}\right)+\ln \frac{N_{c}}{16 \alpha_{s} \pi^{2}}$

Photon can not resolve proton anymore therefore the EE vanishes.
But it might be that the formalism breaks down for low scales. There might be another source of entropy that keep the total entropy not vanishing \rightarrow generalized second law Bekenstein

EE in Diffractive Deep Inelastic Scattering

$$
x_{\mathbb{P}} \quad \begin{aligned}
& \text { proton's momentum fraction carried } \\
& \text { by the Pomeron }
\end{aligned}
$$

$\beta \quad$ denotes the Pomeron's momentum fraction carried by the quark interacting with the virtual photon

$$
\begin{array}{rlr}
x & =\beta \cdot x_{\mathbb{P}} & \text { Bjorken } x \\
& -\ln 1 / x_{\mathbb{P}} & \text { size of rpidity gap } \\
y_{0} & \simeq \ln 1 / x &
\end{array}
$$

Analogous evolution equation as for non-diffractive case but Initial conditions are different and there is delay because of rapidity gap.
Munier, Mueller Phys. Rev. D 98, 034021 (2018)

See also Peschanski, Seki'19 for entanglement in diffraction in p-p

EE in Diffractive Deep Inelastic Scattering

$$
x_{\mathbb{P}} \quad \begin{aligned}
& \text { proton's momentum fraction carried } \\
& \text { by the Pomeron }
\end{aligned}
$$

$\beta \quad$ denotes the Pomeron's momentum fraction carried by the quark interacting with the virtual photon

$$
\begin{array}{rlr}
x & =\beta \cdot x_{\mathbb{P}} & \text { Bjorken } x \\
& -\ln 1 / x_{\mathbb{P}} & \text { size of rpidity gap } \\
y_{0} & \simeq \ln 1 / x &
\end{array}
$$

Analogous evolution equation as for non-diffractive case but Initial conditions are different and there is delay because of rapidity gap.
Munier, Mueller Phys. Rev. D 98, 034021 (2018)

See also Peschanski, Seki'19 for entanglement in diffraction in p-p

Diffraction vs. nondiffraction

H1 detector

EE in DDIS

For large invariant mass M_{x} or small values of β of the diffractive system X, using factorization and the limit of large number of colors, the diffractive system can be described as a set of color dipoles.

We constrain the parameters at low values of β by fit to diffractive pdfs
M. Goharipour, H. Khanpour, and V. Guzey, Eur. Phys. J. C 78, 309 (2018)

EE in DDIS

Asymptotic or maximal entangled region. All configurations have the same probability

High probability of configurations with few partons

EE in DDIS

$$
\begin{aligned}
& \left\langle\frac{d n(\beta)}{d \beta}\right\rangle_{\mathrm{charged}} \simeq \frac{2}{3}\left\langle\frac{d n(\beta)}{d \beta}\right\rangle \\
& p_{n}^{D}\left(y_{X}\right)=\frac{1}{C} e^{-\Delta y_{X}}\left(1-\frac{1}{C} e^{-\Delta y_{X}}\right)^{n-1} \\
& p_{n} \equiv 1 / Z
\end{aligned}
$$

Entropy of hadrons calculated using Gibbs entropy formula

$$
S(Z)=-\sum_{n} p_{n} \ln p_{n}=(1-Z) \ln \frac{Z-1}{Z}+\ln Z
$$

$S_{\text {hadron }}=-\sum P_{N} \log P_{N}$

$$
S_{\text {asym. }}(Z)=\ln Z+1+\mathcal{O}(1 / Z)
$$

number of charged hadrons
Eur. Phys. J. C 5, 439 (1998)

Conclusions and outlook

- We show evidences for the Kharzeev and Levin proposal for low x maximal entanglement entropy of proton constituents .
- It can be systematically improved (quark contributions, NLO BFKL, rc BK) and can describe successfully H1 data.
- We obtain saturation of entropy at small resolution scales.
- We demonstrate that the proposal works for DDIS and that it can be used to study onset of maximal entanglement.

Backup

Bining and KL formula

plot showing dependence of the result on the sie of bins if binig is naive

Data binning takes place in rapidity

$$
\bar{n}_{g}(\bar{x})=\frac{1}{y_{\max }-y_{\text {min }}} \int_{y_{\text {min }}}^{y_{\text {max }}} d y \frac{d n_{g}}{d y}=\frac{n_{g}\left(y_{\text {max }}\right)-n_{g}\left(y_{\text {min }}\right)}{y_{\max }-y_{\text {min }}} \quad y_{\text {max }, \min }=\ln 1 / x_{\text {min }, \max }
$$

$$
\bar{n}_{g}\left(x, Q^{2}\right)=\frac{d n_{g}}{d \ln (1 / x)}=x g\left(x, Q^{2}\right) \quad \text { for small bins } \quad\left\langle\bar{n}\left(x, Q^{2}\right)\right\rangle_{Q^{2}}=\frac{1}{Q_{\max }^{2}-Q_{\min }^{2}} \int_{Q_{\min }^{2}}^{Q_{\max }^{2}} d Q^{2}\left[x g\left(x, Q^{2}\right)+x \Sigma\left(x, Q^{2}\right)\right]
$$

$$
\left\langle S\left(x, Q^{2}\right)\right\rangle_{Q^{2}}=\ln \left\langle\bar{n}\left(x, Q^{2}\right)\right\rangle_{Q^{2}}
$$

Monte Carlo, KL formula, and data

HERA pdf used

See also Kharzeev and Levin
Phys. Rev. D 104, 031503 (2021)

H1
Eur.Phys.J.C 81 (2021) 3, 212

See also Z. Tu, D. Kharzeev, T. Ulrich '20 for calculations of EE in p-p.

