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Motivation

Entanglement can unveil universal properties of strongly coupled
many-body systems (e.g. central charge).

In gauge theories it can show whether the theory is in a confined or
deconfined phase [Klebanov et. al.; 2007].

Entanglement measures are notoriously difficult to calculate analytically,
and numerical methods are limited by the high nonlocality of the
observable.

This motivates the search for efficient algorithms for the calculation of
entanglement entropy and related quantities by means of Monte Carlo
simulations.
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Replica trick

A common way to calculate Rényi entropies and other entanglement
measurements is to exploit the replica trick [Calabrese, Cardy; 2004]

Sn = 1
1 − n log Tr ρn

A = 1
1 − n log Zn

Z n

Image taken from [Cardy et. al.; 2007]. Image adapted from [Alba; 2016].
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Entropic c-function

Problem: Rényi entropies are always UV divergent.
We will consider a slab bipartition of the lattice, so that the entangling
surface ∂A does not depend on l .

In this setup the entropic c-function is
UV finite and encodes all the universal
information contained in the Rényi
entropies

Cn = lD−1

|∂A|
∂Sn

∂l

We work at zero temperature (Lτ � L), where Sn(l) = Sn(L − l);
therefore we use a symmetrized version of the entropic c-function

Cn =
[ L

π
sin
(

πl
L

)]D−1

|∂A|
∂Sn

∂l
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Ratios of partition functions

Also ∂Sn/∂l can be written in terms of a ratio of partition functions.
Using a lattice regularization

∂Sn

∂l ' 1
1 − n

1
a log Zn(l + a)

Zn(l)

Typical lattice approaches used for calculations of the entropic
c-function (see e.g. [Buividovich, Polikarpov; 2008]) suffer from a bad
signal-to-noise ratio [Jokela et. al.; 2023].

In recent years the Turin group has exploited Jarzynski’s equality
[Jarzynski; 1996] to perform high-precision lattice calculations [Caselle
et. al.; 2016][Caselle et. al.; 2018][Francesconi et. al.; 2020][Caselle et.
al.; 2022].

It is becoming increasingly clear that non-equilibrium Monte Carlo
calculations based on this theorem can be a reliable tool for studies of
the entanglement entropy, too [Alba; 2016][D’Emidio; 2019][Zhao et.
al ; 2021][Da Liao et. al.; 2023].
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Jarzinski’s theorem

Jarzynski’s theorem [Jarzynski;
1996] is an exact result that
connects averages of
out-of-equilibrium trajectories of
a statistical system to
equilibrium free energies.

The theorem is valid both for
real and Monte Carlo time
evolution.

Consider the one parameter
evolution Hλ=0 → Hλ=1.
Jarzynki’s theorem states that〈

exp
(

−
∫

βδW
)〉

= Zλ=1

Zλ=0

λ = 0

λ = 1
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Our algorithm
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Theoretical results for 2D CFTs

The theoretical prediction for a CFT on a cylinder of spatial length L is
(c = 1

2 for the Ising model)

C2(x) = c
8 cos(πx) x = l

L

This result holds in the scaling limit L, l � 1, while for finite sizes
scaling corrections can be relevant.

The general theory of unusual corrections to scaling of the entanglement
entropy was developed in [Calabrese, Cardy; 2010].

In the case of the D = 2 Ising model one expects

C2(x) = CCFT
2 (x) + k

2L cot(πx)
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Benchmark: Ising 2D
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Some models in D = 3

For the D = 3 Ising model no analytical solution is known and only few
numerical studies are present in literature [Inglis, Melko; 2013]
[Kulchytskyy et. al.; 2019].
We compared our numerical results at the critical point with three
different models:

- the 2D function
- a function proposed in a study of resonance-valence-bond (RVB) dimers

[Stéphan et. al.; 2012]
- a function derived in [Chen et. al.; 2015] in a holographic setup using the

Ryu-Takayanagi formula [Ryu, Takayanagi; 2006]

S2;2D(x ; c, k) = c log(sin(πx)) + k

S2;RVB(x ; c, k) = −2c log
{

η(τ)2

θ3(2τ)θ3(τ/2)
θ3(2xτ)θ3(2(1 − x)τ)
η(2xτ)η(2(1 − x)τ)

}
+ k
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Results for Ising 3D
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Conclusions and future prospects

Our data for the 2D Ising model are in perfect agreement with the CFT
prediction.

In 3D we showed that our data are well described by a function
extracted from a holographic model and that in a slab geometry the
entropic c-function is monotonically decreasing.

In both cases we obtained precise results in a small amount of time
(< 800 CPU hours for the largest lattice size both in D = 2, 3).

This algorithm can be generalized to arbitrary spin models and gauge
theories.

Future work:
Exploit the duality properties of the 3D Ising model to study the
entanglement content of the Z2 gauge theory.

Extension to non-Abelian gauge theories?
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Some numerical details

For our simulations we adapted the code found in [Komura, Okabe;
2014], implementing the replica space and Jarzynski’s algorithm.

The code is written in CUDA C to achieve high parallelization.

We obtained precise results in a small amount of time: data for L = 128
required approximatively 750 hours on on the CINECA Marconi100
accelerated cluster, based on IBM Power9 architecture and Volta
NVIDIA GPUs.

Data for L = 24, 48 required respectively ∼ 270, 620 hours on on the
CINECA Marconi100 accelerated cluster.
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Benchmarks of the algorithm: 2D
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Benchmarks of the algorithm: 3D
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Duality transformation in 2D
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