Entanglement entropy from non-equilibrium lattice simulations

Andrea Bulgarelli

Università degli Studi di Torino and Istituto Nazionale di Fisica Nucleare

10-13 May 2023 Quantum Entanglement in High Energy Physics

Based on: A. Bulgarelli and M.Panero [arXiv:2304.03311]

Motivation

Motivation

Replica trick on the lattice

Nonequilibrium simulations

Ising 2D

Ising 3D

- Entanglement can unveil universal properties of strongly coupled many-body systems (e.g. central charge).
- In gauge theories it can show whether the theory is in a confined or deconfined phase [Klebanov *et. al.*; 2007].
- Entanglement measures are notoriously difficult to calculate analytically, and numerical methods are limited by the high nonlocality of the observable.
- This motivates the search for efficient algorithms for the calculation of entanglement entropy and related quantities by means of Monte Carlo simulations.

Replica trick

Motivation

Replica trick on the lattice

Nonequilibrium simulations

Ising 20

Ising 3D

Conclusion and future prospects A common way to calculate Rényi entropies and other entanglement measurements is to exploit the replica trick [Calabrese, Cardy; 2004]

$$S_n = \frac{1}{1-n} \log \operatorname{Tr} \rho_A^n = \frac{1}{1-n} \log \frac{Z_n}{Z^n}$$

Image taken from [Cardy et. al.; 2007].

Image adapted from [Alba; 2016].

$$H = -\sum_{k=1}^{n} \left\{ \beta \sum_{\langle ij \rangle \neq \mathcal{C}} \sigma_i^{(k)} \sigma_j^{(k)} + \beta^{(k,k)} \sum_{\langle ij \rangle \perp \mathcal{C}} \sigma_i^{(k)} \sigma_j^{(k)} + \beta^{(k,k+1)} \sum_{\langle ij \rangle \perp \mathcal{C}} \sigma_i^{(k)} \sigma_j^{(k+1)} \right\}$$

Andrea Bulgarelli (UniTo & INFN)

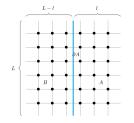
Entropic c-function

Motivation

Replica trick on the lattice

- Nonequilibrium simulations
- Ising 20
- 1.1 0.0
- Conclusions and future prospects

- Problem: Rényi entropies are always UV divergent.
- We will consider a slab bipartition of the lattice, so that the entangling surface ∂A does not depend on *I*.



• In this setup the entropic c-function is UV finite and encodes all the universal information contained in the Rényi entropies

$$C_n = \frac{I^{D-1}}{|\partial A|} \frac{\partial S_n}{\partial I}$$

• We work at zero temperature $(L_{\tau} \gg L)$, where $S_n(I) = S_n(L - I)$; therefore we use a symmetrized version of the entropic c-function

$$C_n = \frac{\left[\frac{L}{\pi}\sin\left(\frac{\pi I}{L}\right)\right]^{D-1}}{|\partial A|}\frac{\partial S_n}{\partial I}$$

Ratios of partition functions

Motivation

Replica trick on the lattice

Nonequilibrium simulations

Ising 20

Conclusions and future prospects • Also $\partial S_n / \partial I$ can be written in terms of a ratio of partition functions. Using a lattice regularization

$$\frac{\partial S_n}{\partial l} \simeq \frac{1}{1-n} \frac{1}{a} \log \frac{Z_n(l+a)}{Z_n(l)}$$

- Typical lattice approaches used for calculations of the entropic c-function (see *e.g.* [Buividovich, Polikarpov; 2008]) suffer from a bad signal-to-noise ratio [Jokela *et. al.*; 2023].
- In recent years the Turin group has exploited Jarzynski's equality [Jarzynski; 1996] to perform high-precision lattice calculations [Caselle et. al.; 2016][Caselle et. al.; 2018][Francesconi et. al.; 2020][Caselle et. al.; 2022].
- It is becoming increasingly clear that non-equilibrium Monte Carlo calculations based on this theorem can be a reliable tool for studies of the entanglement entropy, too [Alba; 2016][D'Emidio; 2019][Zhao et. al; 2021][Da Liao et. al.; 2023].

Jarzinski's theorem

Motivation

Replica trick on the lattice

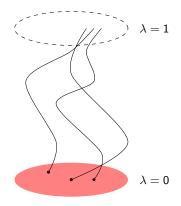
Nonequilibrium simulations

Ising 2D

1-1-- 20

- Jarzynski's theorem [Jarzynski; 1996] is an exact result that connects averages of out-of-equilibrium trajectories of a statistical system to equilibrium free energies.
- The theorem is valid both for real and Monte Carlo time evolution.
- Consider the one parameter evolution $H_{\lambda=0} \rightarrow H_{\lambda=1}$. Jarzynki's theorem states that

$$\left\langle \exp\left(-\int\beta\delta W\right)\right\rangle = rac{Z_{\lambda=1}}{Z_{\lambda=0}}$$



Our algorithm

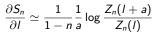
Motivation

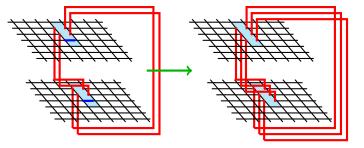
Replica trick on the lattice

Nonequilibrium simulations

Ising 2D

Ising 3D





$$H = -\sum_{k=1}^{n} \left\{ \beta \sum_{\langle ij \rangle \not\perp \mathcal{C}} \sigma_i^{(k)} \sigma_j^{(k)} + \beta^{(k,k)} \sum_{\langle ij \rangle \perp \mathcal{C}} \sigma_i^{(k)} \sigma_j^{(k)} + \beta^{(k,k+1)} \sum_{\langle ij \rangle \perp \mathcal{C}} \sigma_i^{(k)} \sigma_j^{(k+1)} \right\}$$

Motivation

Replica trick on the lattice

Nonequilibrium simulations

Ising 2D

Ising 3D

Conclusions and future prospects • The theoretical prediction for a CFT on a cylinder of spatial length L is $(c = \frac{1}{2}$ for the Ising model)

$$C_2(x) = \frac{c}{8}\cos(\pi x) \qquad \qquad x = \frac{l}{L}$$

- This result holds in the scaling limit *L*, *l* ≫ 1, while for finite sizes scaling corrections can be relevant.
- The general theory of unusual corrections to scaling of the entanglement entropy was developed in [Calabrese, Cardy; 2010].
- In the case of the D = 2 Ising model one expects

$$C_2(x) = C_2^{\mathsf{CFT}}(x) + \frac{k}{2L}\cot(\pi x)$$

Benchmark: Ising 2D

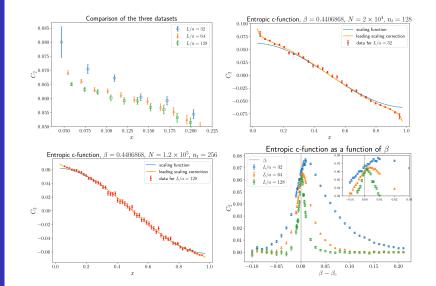
Motivation

Replica trick on the lattice

Nonequilibrium simulation

Ising 2D

Ising 3D



Some models in D = 3

Motivation

Replica trick on the lattice

Nonequilibrium simulations

Ising 2D

Ising 3D

- For the D = 3 Ising model no analytical solution is known and only few numerical studies are present in literature [Inglis, Melko; 2013] [Kulchytskyy et. al.; 2019].
- We compared our numerical results at the critical point with three different models:
 - the 2D function
 - a function proposed in a study of resonance-valence-bond (RVB) dimers [Stéphan *et. al.*; 2012]
 - a function derived in [Chen *et. al.*; 2015] in a holographic setup using the Ryu-Takayanagi formula [Ryu, Takayanagi; 2006]

$$\begin{split} S_{2;2D}(x;c,k) &= c \log(\sin(\pi x)) + k \\ S_{2;RVB}(x;c,k) &= -2c \log \left\{ \frac{\eta(\tau)^2}{\theta_3(2\tau)\theta_3(\tau/2)} \frac{\theta_3(2x\tau)\theta_3(2(1-x)\tau)}{\eta(2x\tau)\eta(2(1-x)\tau)} \right\} + k \\ S_{2;AdS}(x;c,k) &= c\chi(x)^{-\frac{1}{3}} \left\{ \int_0^1 \frac{\mathrm{d}y}{y^2} \left(\frac{1}{\sqrt{P(\chi(x),y)}} - 1 \right) - 1 \right\} + k \end{split}$$

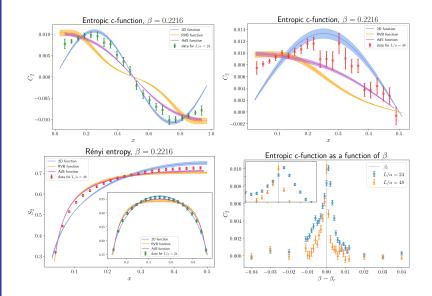
Results for Ising 3D

Motivation

Nonequilibriun simulation

Ising 2D

Ising 3D



Motivation

Replica trick on the lattice

Nonequilibrium simulations

Ising 2D

Ising 3D

Conclusions and future prospects

- Our data for the 2D Ising model are in perfect agreement with the CFT prediction.
- In 3D we showed that our data are well described by a function extracted from a holographic model and that in a slab geometry the entropic c-function is monotonically decreasing.
- In both cases we obtained precise results in a small amount of time (< 800 CPU hours for the largest lattice size both in D = 2, 3).
- This algorithm can be generalized to arbitrary spin models and gauge theories.

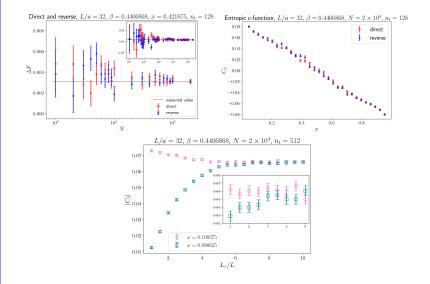
Future work:

- Exploit the duality properties of the 3D Ising model to study the entanglement content of the \mathbb{Z}_2 gauge theory.
- Extension to non-Abelian gauge theories?

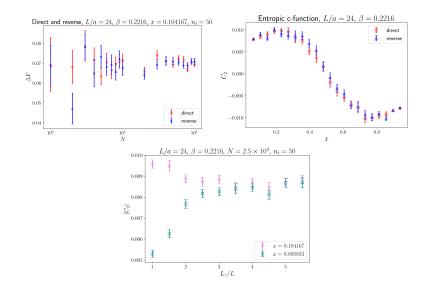
Appendix

- For our simulations we adapted the code found in [Komura, Okabe; 2014], implementing the replica space and Jarzynski's algorithm.
- The code is written in CUDA C to achieve high parallelization.
- We obtained precise results in a small amount of time: data for L = 128 required approximatively 750 hours on on the CINECA Marconi100 accelerated cluster, based on IBM Power9 architecture and Volta NVIDIA GPUs.
- Data for L = 24,48 required respectively $\sim 270,620$ hours on on the CINECA Marconi100 accelerated cluster.

Benchmarks of the algorithm: 2D



Benchmarks of the algorithm: 3D



Duality transformation in 2D

