
Entanglement Entropy in

High Energy Collisions

Michael Lublinsky

Ben-Gurion University of the Negev

Israel



Q: How do the systems produced in high energy collisions thermalise/”hydronise”?

Exploratory approach based on first principles QM w/o assuming any form of

thermalisation.

Similar question (formation of black holes/entropy from collisions of pure states)

The wave-function of an incoming projectile hadron (eigenstate of QCD LC Hamiltonian)

has many entangled gluon Fock components

After collision with a target, some of these gluons will be decohered and observed as final

state particles

Initially, these gluons had an entanglement entropy (with respect to other Fock

components in the incoming wave-function).

This entropy gets ”released” by the scattering in the form of final state entropy

We hope to understand the dynamical mechanism of entropy production

We also hope to be able to shad light on the question to what extent the final state of

the collision resembles a thermal state.
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Light Cone Wave Function in Born-Oppenheimer approximation

HLC
QCD |Ψ〉 = E |Ψ〉

BO: split the modes into hard and soft.

The hard (valence) modes with k+ > Λ

They act as an external background current

j+a = δ(x−) ρa for the soft modes.

H
LC

QCD = H[ρ, a, a†] = HV[ρ] +Hfree[a, a
†] +Hint[ρ, a, a

†] ; Hint ∼ g
′′ρ a′′ + g

′′
aaa

′′

LCWF with no soft modes

HV |v, 0a〉 = E0 |v, 0a〉 ; a |v, 0a〉 = 0 ; E0 = 0

LCWF with soft gluon/quark dressing

|Ψ〉 = Ω(ρ, a, a†) |v, 0a〉 ; Ω
† (Hfree + Hint) Ω = Hdiagonal

Find Ω in perturbation theory

In the dilute limit ρ ∼ 1; gluon emission ∼ αs ρ, LO = one gluon, NLO = 2 gluons
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LCWF in Dilute Limit

Gluon coherent field operator in the dilute limit

ΩY(ρ → 0) ≡ CY = Exp

{

i

∫

d
2
z b

a

i (z)

∫ eY Λ

eY0 Λ

dk+

π1/2|k+|1/2
[

a
a

i (k
+
, z) + a

†a
i (k

+
, z))

]

}

x

z

ρ p

v

Emission amplitude is given by the

Weizsaker-Williams field

b
a

i (z) =
g

2π

∫

d
2
x
(x − z)i

(x − z)2
ρa(x)

The operator C dresses the valence charges by a cloud of the WW gluons
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Density Matrix of soft modes

The wave function coming into the collision region at time t = 0

|Ψin〉 = ΩY |ρ, 0a〉 .

Define the reduced density matrix of soft modes

ρ̂ =

∫

DρW[ρ] |Ψin〉 〈Ψin|

McLerran-Venugopalan model for dense systems:

W
MV

[ρ] = N exp

[

−
∫

k

1

2µ2(k)
ρ(k)ρ(−k)

]

where Q
2

s =
g4

π
µ

2

Qs denotes Saturation Scale – a typical semi-hard transverse momentum in a dense

nucleus. At the same time Qs measures average gluon density.
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”Dilute/Dense mix approximation”: Ω = C and W = WMV (Gaussian),

ρ̂ is computable analytically

T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and ML, arXiv:1503.07126

ρ̂ =
∑

n

1

n!
e−

1
2φiMijφj

[
n
∏

m=1

Mimjmφim|0〉 〈0|φjm
]

e−
1
2φiMijφj

Here we have introduced compact notations:

φi ≡
[

a
†a
i (x) + a

a

i (x)
]

; Mij ≡
g2

4π2

∫

u,v

µ
2
(u, v)

(x − u)i

(x − u)2
(y − v)j

(y − v)2
δ
ab

M bears two polarisation, colour, and coordinate indices, collectively denoted as {ij}.
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Entanglement Entropy

Alex Kovner and ML, arXiv:1506.05394

Entanglement Entropy of soft modes

σ
E

= − tr[ρ̂ ln ρ̂]

How to calculate ln? The “replica trick”:

ln ρ̂ = lim
ǫ→0

1

ǫ
(ρ̂
ǫ − 1)

Calculate ρN and take N → 0. N copies of the field - replicas.

The result

σ
E
=

1

2
tr

{

ln
M

π
+

√

1 +
4M

π
ln

[

1 +
π

2M

(

1 +

√

1 +
4M

π

)]}
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Translationally invariant limit (µ = const):

M
ab

ij (p) = g
2
µ

2pipj

p4
δ
ab

For small M , or the UV contribution (formally UV divergent)

σ
E

UV = tr

[

M

π
ln
πe

M

]

=
Q2

s

4πg2
(N

2

c − 1)S

[

ln
2 g

2Λ2
UV

Q2
s

+ ln
g2Λ2

UV

Q2
s

]

ΛUV ∼ MeY0 ≫ M, where eikonal approximation breaks down

The large M , IR contribution is

σ
E

IR ≃ 1

2
tr[ln

e2M

π
] ==

3(N2
c − 1)

8πg2
SQ

2

s

But not quite what we would like to know.

We need to address scattering process
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Density Matrix of produced soft gluons

The wave function coming into the collision region at time t = 0

|Ψin〉 = ΩY |ρ, 0a〉 .

The system emerges from the collision region with the wave function

|Ψout〉 = Ŝ ΩY |ρ, 0a〉 .

Eikonal scattering approximation

The system keeps evolving after the collision to the asymptotic time t → +∞, at which

point measurements are made

The final state density matrix

ρ̂p =

∫

DρW[ρ]Ω
†
Y |Ψout〉 〈Ψout|ΩY = ρ̂[M

P → M]

Here extra Ω corresponds to final state radiation. It could be also viewed as change of

basis projecting into eigenstates of free Hamiltonian.
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Single inclusive gluon production

z z

Ο   (κ)g
Y

0

Y1

The observable

Ôg ∼ a
† a
i (k) a

a

i (k)

dN

d2kdη
= 〈 tra[ρ̂p Ôg]〉T =

∫

x,y

e
ik(x−y) 〈MP

ii〉T

M
P

ij ≡ g
2

∫

u,v

µ2(u, v)
(x − u)i

(x − u)2
(y − v)j

(y − v)2
[(S(u) − S(x))(S†(v) − S

†(y))]ab

〈...〉T =
∫

[DS] W [S] corresponds to averaging over target fields S and is equivalent to

event-by-event statistical ensemble average
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Produced Entropy

σP = −〈 tr[ρ̂p ln ρ̂p] 〉T

σP =
1

2
〈tr







ln
MP

π
+

√

1 +
4MP

π
ln



1 +
π

2MP



1 +

√

1 +
4MP

π















〉T

T -averaging is complicated Let expand σP around M̄ ≡ 〈MP〉T (dilute projectile limit)

M̄ij = δab
Q2

sπ

g2

∫

z

(x − z)i

(x − z)2
(y − z)j

(y − z)2
[PA(x, y) + 1 − PA(x, z) − PA(z, y)]

PA(x, y) ≡ 〈tr[S(x)S†(y)]〉T - S-matrix of an adjoint dipole

M̄ is almost single inclusive gluon, but it is not summed over ij
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σP = tr

[

M̄

π
ln
πe

M̄

]

− 1

2π
tr
[{

〈(MP − M̄) (MP − M̄)〉T
}

M̄
−1
]

....

First term is almost −n lnn, where n is a multiplicity per unit rapidity (dN/dη)

it depends on the production probabilities of longitudinally and transversely (with respect

to the direction of their transverse momentum) polarized gluons separately

Second term - almost correlated part of double inclusive gluon production.

Correlations between gluons decrease entropy of the produced state.

For a parametrically large number of produced particles (αsdN/dη ∼ 1), the entropy is

parametrically of order 1/αs
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”Temperature” of produced system

We can naturally define temperature through:

T
−1

=
dσ

dET

E⊥ ∝
∫

d
2
k |k|MP

(k) ∝ (N
2

c − 1) S
Q2

P

g2
QT

Keeping only mean field term in the entropy:

T =
π

2
〈kT〉

.

〈kT〉 = E⊥/Ntotal Ntotal =

∫

d
2
kM

P
(k)
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Entropy in a Single Event?

A. Kovner, ML, and M. Serino, Phys. Lett. B 792, 4 (2019)

A given event corresponds to a fixed configuration of the projectile color charges and

target fields. Averaging over these degrees of freedom corresponds to averaging over the

event ensemble.

Intuitively it is clear that one should be able to ascribe entropy even to a single event.

The state of soft gluons emerging from a collision (t = 0) in a given event is a pure state.

|ψ(t = 0)〉 = Ŝ Ω|0〉

After time t

|ψ(t)〉 = Ω
†
U(t) Ŝ Ω|0〉 , U(t) = e

i H t , Ω = U(∞)

At fixed ρ and S, |ψ(t)〉 is a pure state and it has vanishing von Neuman entropy.
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Measurement uncertainty as a source for entropy

|ψ(t)〉 is a superposition of many eigenstates with very different energies.

|ψ(t)〉 =
∑

n

e
−iEntcn|ψn〉 ,

The phases of these eigenstates are not infinitely resolvable by a real experimental

apparatus, because of its finite resolution power. As a result the information about

relative phases of the different eigenstates is scrambled by the measurement. This implies

that the pure state produced by a scattering event will always be known - at best - in

terms of a density matrix.

The density matrix of this state in the energy eigen-basis

ρ̂(t) = |ψ(t)〉〈ψ(t)| =











|c1|2 c1c
∗
2 e

i(E1−E2)t . . .

c2c
∗
1 e

i(E2−E1)t |c2|2 . . .

. . . . . . . . .











.
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The entropy arises due to decoherence of eigenstates with different energies during the

time evolution after the collisions with the target.

We study the decoherence in time of the soft gluon state emerging from the scattering

event by interpreting it as a consequence of an entanglement of the final state particles

with an imaginary experimental apparatus.

If one performs a measurements on the system which takes time T with T ≫ |E1−E2|−1,

such measurement effectively is sensitive only to the time average of the density matrix

over T . Thus all the off diagonal matrix elements between states with large enough

energy differences effectively vanish for the purpose of such measurement, the density

matrix is equivalent to

ρ̂ ∼









|c1|2 0 . . .

0 |c2|2 . . .

. . . . . . . . .









,

This is a mixed density matrix and it has a non vanishing entropy.
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Energy resolution and the calorimeter “white noise”

Introduce an apparatus as a separate degree of freedom coupled to the soft gluons.

Suppose the apparatus is a “calorimeter”, i.e. measures particle energies, then the

additional degree of freedom should directly couple to the energy of the state. The state

of the “calorimeter degree of freedom” contains information about the time resolution via

some typical time scale T . Define a proper time averaged density matrix of soft gluons

by reducing it over the calorimeter degree of freedom.

The extended density matrix now defined on a larger Hilbert space contains an additional

degree of freedom ξ

ρ̂ξ(T) = Ω
†
e
−iξH

Ŝ Ω |G〉 ⊗ |ρ, 0a〉 〈ρ, 0a| ⊗ 〈G|Ω†
Ŝ
†
e
iξH

Ω

with

〈ξ|G〉 = e
− ξ2

2T2 ; Ω
†
HΩ = Hdiagonal = H0

The reduced density matrix of the soft gluons ρ̂′ = trξ[ρ̂ξ]:

ρ̂′(T) =

∫

ξ

1√
πT

e
− ξ2

T2e
−iH0 ξ Ω

†
Ŝ Ω |ρ, 0a〉 〈ρ, 0a|Ω†

Ŝ Ω e
iH0 ξ

M. Lublinsky



Event-by-event entropy in the weak field approximation

The single event entropy is expressed in terms of the leading eigenvalue (1 − δ1)

σ
E

weakfield ≃ −δ1 log δ1 + corrections

δ1 =

∫

q

M
P

ρ (q)

(

1 − e
−

E2
qT

2

2

)

M
P

ρ (q) ≡ g2

q+

∫

u,v,x,y

e
iq(x−y)

ρ
a
(u)ρ

a
(v)

(x − u)i

(x − u)2
(y − v)i

(y − v)2
[(S(u) − S(x))(S

†
(v) − S

†
(y))]

ab

The total multiplicity of soft gluons produced in a given event (at fixed ρa and S)

n =

∫

q

M
P

ρ (q) .
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The simplest näıve expression for Boltzman entropy of a system of n particles

σ = −n log n .

We interpret T as the number of particles produced up to time T

n(T) =

∫

q

M
P

ρ (q)

(

1 − e
−

E2
qT

2

2

)

→ σ
E
(T) = −n(T) log n(T) .

At T = 0 our state has vanishing entropy, since it is just the pure state which emerges

from the scattering region. No individual gluon state can be resolved. Up to time T only

those particles are actually produced, which have energies Eq > 1/T . If the time T is

short, only very energetic gluons are produced, while if one waits infinite amount of time,

all gluons that are present in the wave function immediately after scattering, decohere

from each other and are therefore produced in the final state.
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Time dependent entropy for the ensemble of events

ρ̂P,ξ,ρ =

∫

[Dρ] [DS] W[S] ρ̂
′
(T) e

−
∫

q

ρa(q)ρa(−q)

2µ2(q)

The entropy of the whole ensemble in the weak field limit (expansion in powers of µ2)

σ
E
= −δ1 log δ1 δ1 =

∫

q

〈MP

ρ (q) 〉(ρ,S) 6= δ1(T)

The eigenvalue and, therefore, the entropy of the density matrix averaged over the event

ensemble does not depend on time (in the weak field limit).

Time dependence of the entropy for the ensemble of events is much weaker than for a

single event. We believe that the reason for this lies in the ”monogamy of entanglement”

It is known that if a system A is maximally entangled with system B, then none of those

systems can be entangled with the third system C. for very weak fields the soft gluon

degrees of freedom are maximally entangled with the valence charges. By the monogamy

of entanglement it then means that coupling to another degree of freedom (ξ) does not

change the entropy of the soft gluons.
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Energy evolution in CGC

The energy evolution in CGC is governed by the JIMWLK Hamiltonian

d

dy
W[S] = HJIMWLKW[S]

HJIMWLK =

∫

d2z⊥
2π

Q
a

i [z⊥, j]Q
a

i [z⊥, j]

Q
a

i [z⊥, S] =
g

2π

∫

d
2
x⊥

(x⊥ − z⊥)i
(x⊥ − z⊥)2

[

S
ab(z⊥) − S

ab(x⊥)
]

J
b

R(x⊥)

J
a

R(x⊥) = −trc

{

S(x⊥)T
a δ

δS†(x⊥)

}

,
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CGC density matrix

N. Armesto, F. Dominguez, A. Kovner, ML, and V. Skokov, 1901.08080 [hep-ph] (JHEP)

Diagonal element of the target density matrix

W[S] = 〈S| ρ̂t |S〉

Off-diagonal matrix elements of the target density matrix:

〈S| ρ̂t |S′〉 ≡ W[S,S′]

Lindbladian non-unitary evolution of the density matrix of an open system.

d

dy
ρ̂t =

∫

d2z⊥
2π

[

Q̂
a

i [z⊥],
[

Q̂
a

i [z⊥], ρ̂t
]]

d

dy
W[S,S

′
] =

∫

d2z⊥
2π

[

Q
a

i [z⊥, S] + Q
a

i [z⊥, S
′
]
]2

W[S, S
′
]

Q̂ is a Lindblad operator
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Energy evolution of Entanglement Entropy

d

dy
tr ρ̂

2
< 0

σR = − ln(trρ̂2)
d

dy
σR > 0

In the dilute limit at large rapidity, the entanglement entropy grows linearly with rapidity

according to d
dyσe = γ, where γ is the leading BFKL eigenvalue.

The evolution of ρ̂ in the saturated regime and relate it to the Levin-Tuchin law and find

that the entropy again grows linearly with rapidity, but at a slower rate.

The energy evolution generates mixing/increases entropy even if we start with a pure

state. Decoherence inside the parton cascade
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Summary

What I have reported is a set of pilot ideas on ”Quasi-Thermodynamics”

• Momentum space entanglement between modes separated in rapidity

• Entropy release as a result of scattering process

• Time-dependent decoherence/entropy production as a result of finite resolution

measurement

• Decoherence/entropy generation as a result of energy evolution

M. Lublinsky



Eikonal scattering approximation

A A A A A A A

in out
x −

Eikonal scattering is a color rotation

Eikonal factor does not depend on rapidity

In the light cone gauge (A+ = 0) the large target field component is A− = αt.

S(x) = P exp

{

i

∫

dx
+
T

a
α

a

t(x, x
+
)

}

. ”∆”α
t
= ρ

t
(YM)

|in〉 = |z, b〉 ; |out〉 = |z, a〉 ; |out〉 = S |in〉
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