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Entanglement and high energy collisions?

Kharzeev and Levin, 2017 piqued our interest in possible effects of
quantum entanglement in high energy collisions

DIS probes a small area of the proton, the degrees of freedom in this area
are entangled with the rest of the proton. The entropy of this
entanglement is manifested as the entropy of particle production in the
collision?
KL: especially interesting in the saturation regime: the hadron state is
”maximally entangled”.

Not the only and not the first idea involving entanglement in hadron
collisions.
Eigenstate thermalization: collision produces a system in a highly excited
state, in states like these a large set of observable is expected to have
distributions close to thermal. Again-subset of degrees of freedom. The
entropy associated with this quasi thermal behavior of the subset is
actually entanglement entropy with the rest of the degrees of freedom.
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Is this so very quantum?

Saturation regime - Classical Color Glass Condensate description

Eigenstate Thermalization - highly excited states, quite possibly in the
WKB regime, i.e. semiclassical.

Is this physics really quantum?

Can we understand at least part of the ”entanglement” in question
classically?

The simplest exercise: take two coupled oscillators that move along a
single classical trajectory. The two oscillators are ”classically entangled”,
i.e. the probability to measure one oscillator at a given point depends on
the coordinates of the other oscillator. Form the probability distribution
for the coordinate and momentum of one of the oscillators, and calculate
its Boltzmann entropy.
Compare this ”classical entanglement” entropy to the quantum von
Neumann entropy of the same quantum system in a highly excited state.
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Single oscillator: the probability distribution

Single oscillator first:

H(x , p) =
p2

2
+ V (x)

Energy conservation:

W(p, x) = F (x , p)δ[H(x , p)− E ]

Determine function F : W(x) is proportional to the time the particle spends in the
interval ∆x around the point x as it traverses the trajectory many times.

W(x) ≡
∫

dp W(x , p);∝ ∆t =
∆x

|ẋ |
=

∆x

|p(x)|

Similarly

W(p) ∝ ∆p

|ṗ|
=

∆p

|∂H∂x (x(p), p)|

Compare and normalize:

W(x , p) =
ω

π
δ

[
p2

2
+

ω2

2
x2 − E

]
.
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Classical oscillators: the probability distribution

Coupled classical oscillators

Hc =
1

2

[
p2x + p2y + ω2x2 +Ω2y2 + 2Cxy

]
.

We take Ω ≫ ω ≫ C and integrate over the ”fast” coordinate y .
What is the joint probability distribution? One could diagonalize the system and
write the probability distribution as the product for the two independent oscillators.
Alternatively, there are two conserved quantities in the system :

E+ =
1

2

[
p2x + p2y + ω2x2 +Ω2y2 + 2Cxy

]
,

E− ≈1

2

[
p2y − p2x

]
+

2C

Ω2
pxpy +

1

2

[
Ω2y2 − ω2x2

]
+ Cxy .

W must be proportional to the product of δ-functions. Determine the
proportionality constant from normalization. So:

W(x , px ; y , py ) =Nδ

(
E+ − 1

2

[
p2x + p2y + ω2x2 +Ω2y2 + 2Cxy

])
× δ

(
E− −

[
1

2

[
p2y − p2x

]
+

2C

Ω2
pxpy +

1

2

[
Ω2y2 − ω2x2

]
+ Cxy

])
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The ”reduced” probability density.

Now for the ”reduced” probability distribution. I.e. if we only measure the
coordinate x and momentum px , we have to ”integrate out” the
coordinate y , py .

W(x , px) = N

∫
y ,py

δ

(
E+ − 1

2

[
p2x + p2y + ω2x2 +Ω2y2 + 2Cxy

])
× δ

(
E− −

[
1

2

[
p2y − p2x

]
+

2C

Ω2
pxpy +

1

2

[
Ω2y2 − ω2x2

]
+ Cxy

])
.

Luckily for us when C ≪ ω2 ≪ Ω2 integrating out y , py is easy
analytically

W(x , px) = N
Ω2

2C |px |
2√

C 2x2 +Ω2(2E+ − (p2x + p̄2y + ω2x2))

where

p̄y =
Ω2

2Cpx

(
E− − E+ + p2x + ω2x2

)
.

Alex Kovner (University of Connecticut ) Classical Entanglement and Entropy May 13, 2023 6 / 20



The Boltzmann Entropy

”Classical entanglement” entropy (the Boltzmann entropy for our
”reduced” probability distribution)

SB = −
∫

dpdxW(p, x) ln[W(p, x)∆] .

The parameter ∆ needs to be introduced since W is dimensionless! The
usual ”complication” with classical continuous distributions.

This is actually nontrivial, and this is what distinguishes Boltzmann
entropy from Shannon entropy in discrete systems.

We take ∆ = h/2 having in mind quantum-classical correspondence.
More on this later if time permits.
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The Boltzmann entropy

The integral again can be performed analytically. Long story short:

SCE = ln

π2C

Ω2

√
E 2
+ − E 2

−

hω

 = ln

[
πC

Ω

√
E1E2

ℏωΩ

]
.

here E1 and E2 are energies of the two noninteracting ”normal mode”
oscillators into which we can rotate x and y .

For C too small this is negative. It happens with Boltzmann entropy: e.g.
”third law” of thermodynamics is violated in classical statistical mechanics.

The condition of the positivity of entropy in fact coincides with the
requirement that the interaction energy of the two oscillators is much larger
than ℏΩ.
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The quantum system

Take the same quantum system.

Take a highly excited state, where occupation numbers for both oscillators
are large.

Integrate out the y oscillator.

Calculate von Neumann entropy

If we are to relate the classical entropy to the entropy of the quantum
system, we should require that all energies are large relative to the vacuum
energy of a single oscillator:

E1 ≫ ℏΩ, E2 ≫ ℏΩ; C 2⟨x2y2⟩ ∼ C 2 E1E2

Ω2ω2
≫ ℏ2Ω2 .

High energy -highly excited states - WKB wave functions.
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WKB 101 - Harmonic oscillator

For a single oscillator

ϕWKB
n, odd(x) =

√
4

Tp(x)
sin(

S(x)

ℏ
), ϕWKB

n, even(x) =

√
4

Tp(x)
cos(

S(x)

ℏ
) .

p(x) ≡

√
2

(
En −

1

2
ω2x2

)
.

S(x) =

∫ x

0
dzp(z) =

√
2

∫ x

0
dz

√
En −

1

2
ω2z2

The action can be written

S(x) = n(θ +
1

2
sin(2θ)); sin(θ) =

√
ℏω
2n

x .

For x far away from the classical turning points |x |turn =
√

2n+1
ℏω ,

S(x) ≈ x
√
2nℏω .

This is actually a very good approximation for almost all x .
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WKB- two coupled oscillators

We start with

ϕWKB
n,m (x , y) =

√
16

T1T2p(x1)p(x2)
sin

(
1

ℏ
S1(x1)

)
sin

(
1

ℏ
S2(x2)

)
The ”normal modes”:

x1 = αx − βy , x2 = βx + αy

with

α2 ≈ 1− C 2

Ω4
, β2 ≈ C 2

Ω4
.

For C ≪ ω2 ≪ Ω2

ϕWKB
n,m (x , y) ≈

√
16

T1T2pxpy
sin

(
1

ℏ
S1(x)

)
sin

(
1

ℏ
(S2(y) + βxpy )

)

=

√
16

T1T2pxpy
sin

(
1

ℏ
S1(x)

)[
sin

1

ℏ
S2(y) cos

1

ℏ
βxpy + cos

1

ℏ
S2(y) sin

1

ℏ
βxpy

]
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The reduced density matrix I.

By definition:

ρ̂(x , x̄) =

∫
dyϕWKB∗

n,m (x̄ , y)ϕWKB
n,m (x , y) .

y has high frequency, oscillates fast and all oscillating terms can be neglected,
except those that come with prefactor β in the exponent:

ρ̂(x , x̄)WKB ≈
∫

dy
2

T1T2py

1
√
pxpx̄

(1){[
sin

(
1

ℏ
[S1(x) + βxpy ]

)
+ sin

(
1

ℏ
[S1(x)− βxpy ]

)]
×
[
sin

(
1

ℏ
[S1(x̄) + βx̄py ]

)
+ sin

(
1

ℏ
[S1(x̄)− βx̄py ]

)]
+

[
cos

(
1

ℏ
[S1(x) + βxpy ]

)
− cos

(
1

ℏ
[S1(x)− βxpy ]

)]
×
[
cos

(
1

ℏ
[S1(x̄) + βx̄py ]

)
− cos

(
1

ℏ
[S1(x̄)− βx̄py ]

)]}
.
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The reduced density matrix II

Define

δn =
1

ℏ

√
2n

ω
βpy .

Parametrically py ∼
√
2E2, so that

δn ∼ C

Ω

√
E1E2

Ωℏω
; δn ≪ n .

We can then write

ρ̂WKB(x , x̄) =

∫
dy

2

T1T2py

1
√
pxpx̄{[

sin
1

ℏ
x
√

2(n + δn)ω + sin
1

ℏ
x
√

2(n − δn)ω

]
×
[
sin

1

ℏ
x̄
√

2(n + δn)ω + sin
1

ℏ
x̄
√

2(n − δn)ω

]
+

[
cos

1

ℏ
x
√

2(n + δn)ω − cos
1

ℏ
x
√

2(n − δn)ω

]
×
[
cos

1

ℏ
x̄
√

2(n + δn)ω − cos
1

ℏ
x̄
√

2(n − δn)ω

]}
.

Looks almost like weighted integral over the occupation number of products of
WKB functions for x .
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Reduced density matrix, finally

With a little bit more massaging

ρ̂WKB(x , x̄) =

∫ √
4E1E2C

2

ℏ2ω2Ω4

0
d(δn)λ(δn)

∑
i

ϕi∗
δn(x̄)ϕ

i
δn(x)

with the basis functions

ϕ1
δn ≡

√
1

T1p(x)

[
sin

(
1

ℏ
Sn+δn(x)

)
+ sin

(
1

ℏ
Sn−δn(x)

)]

ϕ2
δn ≡

√
1

T1p(x)

[
cos

(
1

ℏ
Sn+δn(x)

)
− cos

(
1

ℏ
Sn−δn(x)

)]
and the normalized probability density

λ(δn) =

√
ℏ2ω2Ω4

4π2C 2E1E2

1√
1− ℏ2ω2Ω4

4E1E2C2 (δn)2
.
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The quantum entanglement entropy.

Once we have the density matrix as the weighted sum of products of basis
functions, the entropy is easy

SE = −2

∫ √
4E1E2C

2

ℏ2ω2Ω4

0
d(δn)λ(δn) lnλ(δn)

= ln

[
πC

Ω

√
E1E2

ℏωΩ

]
.

Compare with our result for the ”classical entanglement” entropy

SCE = ln

[
πC

Ω

√
E1E2

ℏωΩ

]
= SE
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Discussion/Conclusions

An observation. For the ground state the entanglement entropy has been
calculated earlier. Easy for excited states with low energies E1 and E2, such
that

f =
C 2E1E2

(ℏω)2Ω4
≪ 1

In this regime reduced density matrix mixes only two states, and

S low
E = −(1− f ) ln(1− f )− f ln f

f is the ”occupation number” of the x oscillator.
Compare this with our result (f > 1)

Shigh
E = ln(πf 1/2) .

We are in the ”maximally entangled” regime - many states (δn ∼ f 1/2) are
occupied with (almost) equal probability.

Alex Kovner (University of Connecticut ) Classical Entanglement and Entropy May 13, 2023 16 / 20



Discussion/Conclusion

What does it teach us?

There exists quantum-classical correspondence for entanglement entropy,
at least in our simple case.
The analog of the ”maximally entangled sate” in our model is indeed
classical, and can be studied classically.
For this system classical entanglement captures the essence of quantum
entanglement.

Disclaimer: of course not every quantum entangled state has a classical
analog. Bell’s theorem remains Bells’ theorem.

Is the same true in QCD, i.e. for eigenstate thermalization and such? I
wish I knew, but it is not out of the question.
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After conclusions: Shannon vs Boltzmann entropy

Entropy for smooth distribution of a continuous variable is tricky.

Sa = −
∫

dDVW(xi ) ln[W(xi )∆V ]

with ∆V = aD . No ”continuum limit” a → 0, i.e. Shannon entropy
diverges for a smooth distribution.
If L - a typical scale of variation of W,

Sa = S(L)− D ln
a

L

With S(L) - finite and well defined.
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After conclusions: Shannon vs Boltzmann entropy

Is our classical oscillator a ”pure state”? No, in the sense that it has
nonvanishing Shannon or Boltzmann entropy.
W is not smooth - recall a δ-function. But if we use for a the same scale
on which we regulate the δ-function we get

SSO = − ln

[
a

π

√
2ω

E

]
SDO = − ln

[
a2

π2

√
4ω1ω2

E1E2

]
.

This is nonzero, but ”unnaturally small” in the sense that it scales with
the cutoff as D

2 ln a rather than D ln a.
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After conclusions: Shannon vs Boltzmann entropy

Can classical entropy grow when we integrate degrees of freedom? I.e. can we
characterize ”classical entanglement” by entropy growth like in QM?
If yes, it cannot be Shannon entropy. For a distribution of discrete variable.

SShannon = −
∑
x

px ln px

If W (x) ≡
∑

y W (x , y) it is always true:

SShannon
2 =

∑
x ,y

W (x , y) lnW (x , y) ≥ SShannon
1 =

∑
x

W (x) lnW (x) .

But for Boltzmann entropy

SBoltzmann
1 − SBoltzmann

2 = SShannon
1 − SShannon

2 + ln
b

a

Since b > a, there is no sharp statement.
In fact, if we define entropy per degree of freedom, for our example of two
harmonic oscillators it indeed grows when we integrate out y , precisely because
a single oscillator is ”almost a pure state”.
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