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an entangled pair of outgoing particles

The interaction produces
entanglement.




Formulation of entanglement entropy Iin elastic
scattering

[Peschanski and Seki, Phys. Lett. B758 (2016) 89]



Let us consider an elastic scattering of two particles, A and

B.
mp gl‘i\\]gA QmA
©

We focus on a two-particle state in the momentum Hilbert
space.

[Seki and Sin, Phys. Lett. B735 (2014) 272]
[Balasubramanian, McDermott and Raamsdonk, Phys. Rev D86 (2012) 045014]
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Initial state ini) = |k, 1)

S-matrix S

Once we fix the initial state, the S-matrix, S, gives the final
state; Slini). However it includes not only two-particle
states.

Two-particle final state fin)

Since we are interested in the final state of two particles, we
project out the states except for the two-particle ones by
using the projection operator;

d’p  d°q -
fin) = 0, q)(p,q|S|k
i) = [ S ISR




otal density matrix p

'he total density matrix for the final state is defined by
n) (fin|

1
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N 1s a normalization factor. Later it will be determined by
tratrgp = 1.

Reduced density matrix pA

Tracing out the total density matrix with respect to Hg, we
obtain the reduced density matrix;

d3 —//
pa=trpp = 8(q" |pld" B
2EB =1/
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We extract a factor about the energy-momentum
conservation from the S-matrix element,

— —

- - 7 4 4 - = 7
(7,7 ISk, ) = W (P — P (7, qls|k, D),

where P stands for the center-of-mass energy
mMmomentum vector.

Then we can rewrite the reduced density matrix as
— g - EBk)
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Now let us move Into the center-of-mass frame.

The normalization factor determined by tratrgp=11s

0(p — k) S1al7 |2
N = 6OON . N — / 025 (7, —ps|k, k)
0 (Bt Epy) '

The reduced density matrix is rewritten as

o / d*p o(p — k)
PAZNIGE(0) | 2Eay 4k(E z + E 57)

N
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In order for the entanglement entropy, we calculate

(7, —F|s|k, — k)|

n o __ 3= (3> —
tra(pa) /d p o (0) (5@ k)N’5(3)(0)4k(EAE + Epgp)

because

0

Spp = — lim 5 tra(pa)” = —trapalnpa

., 1
(cf. Rényi entropy: Sgrg = . Intra(pa)™)
— T
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Partial wave expansion

[Van Hove, Nuovo Cim. 28 (1963) 2344]
[Biatas and Van Hove, Nuovo Cim. 38 (1965) 1335]

The partial wave expansion Is often useful for analyzing
scattering processes.

— — E "4 _l_E "4
(7, —plslk, —k) = —SE——LE .
mk

f:(% + 1)(1 + 2¢7¢) Py(cos6)
=0

E,;+ Epp '
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mk 167
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P, are Legendre polynomials.
We know the summation formula of Legendre polynomial,

O

0(1 —cosf) = % Z(% + 1) Py(cos6)

¢=0
11



One can calculate tra(p4)™ in terms of the partial wave
modes,

" 50)  \"' [ 1 [32,(20 4+ 1)50Py(cos 0)]”
tra(pa) _<5<3>(0)27rk2) /_1dcose 2 £Z£(2€+1)\Se!2

By using the mathematical identity of delta-function in
spherical coordinates with azimuthal symmetry,

5(3) (5 —

(2¢ + 1) Py(cos )
2 Z d
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we obtain
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V' is the divergent full phase-space “volume”:

V = i(% +1) =
¢=0

We obtain the following expression:

tl“A ,OA ( > dCOS@ [P(@)]n ]
B 1 (20 + 1)3ng(cos 9)}
Pl) = 5 z (20 + 1),

One can recognize it as a kind of probability. Actually it is of
norm,

1
/ dcosOP(0) =
—1
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P(0)is also written In terms of 7, f, as
25" ,(20 + 1) |7)?
PU0) =60 =) (1= )
| ‘Ze(% + 1)7p Py (cos 6’)‘2
V2=, (20 1) fe
fe (= (Im7; — |7¢|?) from the unitarity condition of the S-
matrix) corresponds to inelastic channels.

The cross sections INn terms of the partial wave modes are

4 T
]{2 (26 -+ 1)‘Tg| Oine] = ﬁ (22 —+ 1)fg :

(=0 ¢=0

Oecl —

do g T : B Al

=7 %:(2€+ 1)1¢Pp(cosf)| = ST

(tis the Mandelstam variable; t = 2k*(cos 6 — 1).) 14




One can rewrite P(0) as

L B . Oel
P(O) = (1 — cosh) (1 VTR Uine1>

| 1 dael Oel
0. dcosf TV /k? — Oinel

Entanglement entropy

0 N A
Sgg = — lim — tra(pa)” =1ln— — dcos@P(0)InP(0)

n—1 an 2 1

There Is a problem, i.e., this formula depends on the Infinite
volume V, so that this is physically meaningless.
Therefore some regularization is necessary.




Regularization
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Volume regularization

L B . Oel
P(O) = 6(1 — cosb) (1 VR Uinel)

| 1 dO’el O el
0o dcosb TV /k? — Ginel

The first term comes from part of the two-body Hiloert
space of the final states which does not correspond to the

iInteracting states at the given energy. Because this term
has support only at 6 = 0.
cf.

<ﬁ7 —ﬁ‘S‘E, _IZ> —

E

By i
— (5( cos ) IGWA(S’ t))
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In order to avoid the non-interacting modes in an ideal cut-
off Independent way, we regularize the volume V 1o V,
1 Oel 0 e ‘7 _ ]{2(0'61 + Uinel) _ kQO-tot

and then

- 1 do. 2k? do,
79(9): Oel O el

g dcosf o dt

Currently we do not know a concrete way to realize this
regularization. So we call it “ideal”.

Finally this regularization leads the formal entanglement
entropy to the volume-regularized entanglement entropy,

0
~ 1 dog 4 dog
SEE = — dt ]
= /—oo Oel dt n(atotael dt )
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Cutoff regularization

Impact parameter representation

A =167 (20 + )7, Py(cos ) = 327k / b (b Jo (bv/—1)
0

/=0 Bessel function

In order to get rid of the contribution of large b, we
introduce a cutoft function ¢(b) with glm c(b) = 0.

A = 327k> / N bdb c(b)T(b)Jo(byv/ —1)
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For example,

- step-function - Gaussian
1 (b <2A) B 1
c(b) = {O (b 24) c(b) = exp <—§ 4A2)

The cross sections are also modified as

Oior = ST / bdb c?(b) Im 7(b)
0

0 A o0
do.
&61:/ dt ;’tl :&r/ bdb ¢ (b)|T(b)|?,
0

— OO

Ginel = 4T / bdb c*(b) f(b),
0

do el
dt

= 47 /OO bdb c(b)T(b)Jy(bv/ —t)




For both cutoff functions, the infinite volume is regularized
as

V=V =2k / bdb ¢ (b) = 4k*A?
0

and also we impose the condition;

P<9>:5<1—cose>.(1_ L ): 1 dog ( o

7V /k2 — Oipel o dcost 7V /k? = Ginel
=0
- k2
= V = _5-tot
Tr

Hence the cutoff parameter A Is fixed,

47TA2 — &tot

)
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[Peschanski and Seki, Phys. Rev. D 100 (2019) 076012]
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Let us evaluate the regularized entanglement entropy for
high-energy proton-proton scattering.

One can use the experimental data of the elastic, inelastic
and total cross sections by Tevatron and LHC.

In order to use our formula with the volume regularization,
' ' ' dgel

we need to know the differential cross section — as a

function of .

Therefore, for simplicity, we assume a diffraction peak
approximation, which is characterized by the scattering
amplitude:

A(S, t) — Z.SO'tOteéBt

B Is a slope parameter.

s 1S the Mandelstam variable equal to (center-of-mass
energy)?.
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he differential cross section and the slope parameter are

doel _ 0ot Bt B Tt
dt 160 1670

We can calculate the volume-regularized entanglement
entropy,

0
SEE:—/ dt Olln( " §t1)21+1n Oel

— 00 O el dat OtotOel

V5 [GeV] [ oor [mb] [ o [mb] | Sgg
1800 72.1 16.6 0.9176
7000 98.58 25.43 1.031
8000 101.7 27.1 1.063

13000 110.6 31.0 1.114

The entropy monotonically increases as the center-of-mass
energy.
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Comparison of the entanglement entropy for proton-proton
scattering in 3 regularization schemes.

SE_E step-function
1.2 . .
' volume-regularization

or Gaussian

08}
06f
04}
02}

N T T T T S B
2000 4000 6000 8000 10000 12000 \/g [Gev]

N all cases, the entanglement entropy monotonically
iIncreases as the center-of-mass energy.

'he difference among the 3 regularization schemes shrinks
at higher energy.




Summary and future problems
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Summary

- We have formulated the entanglement entropy of the
two-particle final state in an elastic scattering.

- The divergence of infinite volume Is regularized in the
“iIdeal” cutoff-independent way.

-+ Assuming the diffraction peak model, we have evaluated
the regularized entanglement entropy for the high-energy
proton-proton scattering by using the experimental data
by Tevatron and LHC.

-+ The entanglement entropy monotonically increases as the
center-of-mass energy.
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Future problems

Inelastic scattering [work in progress with R. Peschanski]

A1+ By A + By (e|aSJ[iC)
As + By (two-particle inelastic)
X (multi-particle inelastic)

entanglement entropies and their ratio”
SAl +B1
SAQ + B>

SA1—|—Bl , SAQ—I—BQ7

Diffraction dissociation
- AdS/CFT correspondence
- String scattering
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