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Question: What is the entanglement entropy of the 
final state in elastic scattering?
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AB

an unentangled pair of incoming particles

interaction

an entangled pair of outgoing particles

The interaction produces 
entanglement.

B

A
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Formulation of entanglement entropy in elastic 
scattering

[Peschanski and Seki, Phys. Lett. B758 (2016) 89] 
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Let us consider an elastic scattering of two particles, A and 
B.

B

A

A

B

We focus on a two-particle state in the momentum Hilbert 
space.

[Seki and Sin, Phys. Lett. B735 (2014) 272] 
[Balasubramanian, McDermott and Raamsdonk, Phys. Rev D86 (2012) 045014] 
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Since we are interested in the final state of two particles, we 
project out the states except for the two-particle ones by 
using the projection operator;

Initial state

Once we fix the initial state, the S-matrix,   , gives the final 
state;         . However it includes not only two-particle 
states.

S-matrix

Two-particle final state
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The total density matrix for the final state is defined by 
Total density matrix

     is a normalization factor. Later it will be determined by 
                  . 

Reduced density matrix
Tracing out the total density matrix with respect to      , we 
obtain the reduced density matrix;
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Then we can rewrite the reduced density matrix as 

We extract a factor about the energy-momentum 
conservation from the S-matrix element,

where        stands for the center-of-mass energy 
momentum vector.
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Now let us move into the center-of-mass frame.

B

A

A

B

The normalization factor determined by                    is 

The reduced density matrix is rewritten as
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In order for the entanglement entropy, we calculate 
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because 

(cf. Rényi entropy:                                        )



Partial wave expansion

The partial wave expansion is often useful for analyzing 
scattering processes. 

    are Legendre polynomials.
We know the summation formula of Legendre polynomial,
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[Van Hove, Nuovo Cim. 28 (1963) 2344] 
[Białas and Van Hove, Nuovo Cim. 38 (1965) 1385] 



By using the mathematical identity of delta-function in 
spherical coordinates with azimuthal symmetry, 

One can calculate               in terms of the partial wave 
modes,

we obtain
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We obtain the following expression:

   is the divergent full phase-space “volume”:

One can recognize it as a kind of probability. Actually it is of 
norm,
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The cross sections in terms of the partial wave modes are

       is also written in terms of         as

(  is the Mandelstam variable;                         .) 14

     (                           from the unitarity condition of the S-
matrix) corresponds to inelastic channels.



Entanglement entropy

One can rewrite         as

There is a problem, i.e., this formula depends on the infinite 
volume   , so that this is physically meaningless.  
Therefore some regularization is necessary. 
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Regularization
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Volume regularization

The first term comes from part of the two-body Hilbert 
space of the final states which does not correspond to the 
interacting states at the given energy. Because this term 
has support only at         . 
   cf.
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In order to avoid the non-interacting modes in an ideal cut-
off independent way, we regularize the volume  to ,V Ṽ

Finally this regularization leads the formal entanglement 
entropy to the volume-regularized entanglement entropy, 

and then

Currently we do not know a concrete way to realize this 
regularization. So we call it “ideal”.
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Cutoff regularization

Impact parameter representation

In order to get rid of the contribution of large   , we 
introduce a cutoff function       with                  .

A

B
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Bessel function



For example,  
 - step-function                       - Gaussian

The cross sections are also modified as 
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For both cutoff functions, the infinite volume is regularized 
as

and also we impose the condition;

= 0

Hence the cutoff parameter    is fixed, 
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Evaluation of Entanglement Entropy  
in Proton-Proton Scattering at High Energy
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[Peschanski and Seki, Phys. Rev. D 100 (2019) 076012]



In order to use our formula with the volume regularization, 
we need to know the differential cross section        as a 
function of   .

Therefore, for simplicity, we assume a diffraction peak 
approximation, which is characterized by the scattering 
amplitude:

Let us evaluate the regularized entanglement entropy for 
high-energy proton-proton scattering.  
One can use the experimental data of the elastic, inelastic 
and total cross sections by Tevatron and LHC. 

    is a slope parameter.
   is the Mandelstam variable equal to (center-of-mass 
energy)2.
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The differential cross section and the slope parameter are 

We can calculate the volume-regularized entanglement 
entropy,

√
s [GeV] σtot [mb] σel [mb] S̃EE

1800 72.1 16.6 0.9176

7000 98.58 25.43 1.031

8000 101.7 27.1 1.063

13000 110.6 31.0 1.114
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The entropy monotonically increases as the center-of-mass 
energy.
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Comparison of the entanglement entropy for proton-proton 
scattering in 3 regularization schemes.

Fig. 1: The entanglement entropy in three different regularizations with respect to the

center-of-mass energy.

finite two-particle Hilbert space actually spanned by elastic collisions at a given energy. For

the discussion we have first introduced a formulation of a finite entanglement entropy S̃EE

using the formal definition supplemented with a regularized Hilbert space volume, which is

defined by projecting out the volume of phase space spanned by the non-interacting final

states responsible of the divergence. We then considered two explicit cut-off definitions, one

using a step-function and the other with a Gaussian.

Summarizing our results, we found the following:

i) The volume-regularized formulation provides an expression of the entanglement en-

tropy in terms of physical observables (2.28);

S̃EE = −
∫ 0

−∞
dt

1

σel

dσel

dt
ln

(
4π

σtotσel

dσel

dt

)
.

ii) In search of an adequate quantitative cut-off procedure defining the finite physical

Hilbert space, we considered the case of proton-proton elastic scattering at the Tevatron

and LHC energies. In a diffraction peak approximation as a simple example, we have

compared the numerical results for the regularized entanglement entropy ŜEE in two

different cut-offs, and we also compared them with the result for the entanglement

entropy S̃EE (see Eq. (3.36)) from the volume-regularization.

iii) Since a cut-off dependence appears for the observables in the formula (2.28) and modi-

fies their contribution to the entanglement entropy, the effect of the cut-off is to replace

the observables in Eq. (2.28) with their expressions with the cut-off as ŜEE in Eq. (3.8).

The step-function cut-off appears to give a better approximation of the real observables
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In all cases, the entanglement entropy monotonically 
increases as the center-of-mass energy.  
The difference among the 3 regularization schemes shrinks 
at higher energy. 
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Summary and future problems
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Summary

• We have formulated the entanglement entropy of the 
two-particle final state in an elastic scattering.  

• The divergence of infinite volume is regularized in the 
“ideal” cutoff-independent way. 

• Assuming the diffraction peak model, we have evaluated 
the regularized entanglement entropy for the high-energy 
proton-proton scattering by using the experimental data 
by Tevatron and LHC. 

• The entanglement entropy monotonically increases as the 
center-of-mass energy.
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Future problems

• Inelastic scattering                  [work in progress with R. Peschanski] 
 
 
 
 
 
 
entanglement entropies and their ratio? 
 

• Diffraction dissociation 
• AdS/CFT correspondence 
• String scattering

(elastic)
(two-particle inelastic)
(multi-particle inelastic)
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