Probing the limits of quantum theory in high energy physics.

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Michał Eckstein^{1,2} & Paweł Horodecki^{2,3}

 1 Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland 2 International Center for Theory of Quantum Technologies, University of Gdańsk, Poland 3 Gdańsk University of Technology, Poland

1/15

Kraków, 11 May 2023

Michał Eckstein (UJ, Kraków, Poland) Beyond quantum mechanics in HEP Kraków, 11 May 2023

Routes towards New Physics

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

Beyond Standard Model, but still in QFT

SUSY, composite Higgs, dark sector, inflation, . . .

2 Beyond Special Relativity, but assuming QM

• QFT in curved spacetimes - 'semi-classical' (Unruh effect, ...)

< ロト < 同ト < ヨト < ヨト

2/15

• quantum gravity

Routes towards New Physics:

Beyond Standard Model, but still in QFT

SUSY, composite Higgs, dark sector, inflation, . . .

2 Beyond Special Relativity, but assuming QM

• QFT in curved spacetimes - 'semi-classical' (Unruh effect, ...)

イロト イポト イラト イラト

2/15

• quantum gravity

Routes towards New Physics:

Beyond Standard Model, but still in QFT

• SUSY, composite Higgs, dark sector, inflation,

2 Beyond Special Relativity, but assuming QM

• QFT in curved spacetimes - 'semi-classical' (Unruh effect, ...)

イロト イヨト イヨト

2/15

• quantum gravity

Routes towards New Physics:

Beyond Standard Model, but still in QFT

• SUSY, composite Higgs, dark sector, inflation,

2 Beyond Special Relativity, but assuming QM

• QFT in curved spacetimes - 'semi-classical' (Unruh effect, ...)

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2/15

• quantum gravity

Routes towards New Physics:

Beyond Standard Model, but still in QFT

• SUSY, composite Higgs, dark sector, inflation,

Beyond Special Relativity, but assuming QM

• QFT in curved spacetimes - 'semi-classical' (Unruh effect, ...)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のへで

2/15

• quantum gravity

Routes towards New Physics:

Beyond Standard Model, but still in QFT

• SUSY, composite Higgs, dark sector, inflation,

Beyond Special Relativity, but assuming QM

- QFT in curved spacetimes 'semi-classical' (Unruh effect, ...)
- quantum gravity

3 Beyond Quantum Mechanics, but assuming relativity

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のへで

Routes towards New Physics:

Beyond Standard Model, but still in QFT

• SUSY, composite Higgs, dark sector, inflation,

Beyond Special Relativity, but assuming QM

• QFT in curved spacetimes – 'semi-classical' (Unruh effect, ...)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のへで

2/15

• quantum gravity

Routes towards New Physics:

Beyond Standard Model, but still in QFT

• SUSY, composite Higgs, dark sector, inflation,

Beyond Special Relativity, but assuming QM

- QFT in curved spacetimes 'semi-classical' (Unruh effect, ...)
- quantum gravity

3 Beyond Quantum Mechanics, but assuming relativity

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のへで

2 parties (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

$$P(a, b \mid x, y)$$

The *experimental* (frequency) correlation function:

$$C_e(x,y) = \frac{N_{++} + N_{--} - N_{+-} - N_{-+}}{N_{++} + N_{--} + N_{+-} + N_{+-}}$$

_ocal hidden variables [Bell (1964) / Clauser, Horne, Shimony, Holt (1969)]

 $S_{\mathsf{LHV}} := C_{\mathsf{LHV}}(x,y) + C_{\mathsf{LHV}}(x,y') + C_{\mathsf{LHV}}(x',y) - C_{\mathsf{LHV}}(x',y') \le 2$

Quantum Mechanics [Cirelson (1980)]

 $S_{\text{QM}} := C_{\text{QM}}(x, y) + C_{\text{QM}}(x, y') + C_{\text{QM}}(x', y) - C_{\text{QM}}(x', y') \le 2\sqrt{2}$

Michał Eckstein (UJ, Kraków, Poland)

Beyond quantum mechanics in HEP

Kraków, 11 May 2023 3 / 15

3

SQA

イロト イヨト イヨト

2 parties (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

 $P(a, b \mid x, y)$

The *experimental* (frequency) correlation function:

$$C_e(x,y) = \frac{N_{++} + N_{--} - N_{+-} - N_{-+}}{N_{++} + N_{--} + N_{+-} + N_{-+}}$$

ocal hidden variables [Bell (1964) / Clauser, Horne, Shimony, Holt (1969-

 $S_{\text{LHV}} := C_{\text{LHV}}(x, y) + C_{\text{LHV}}(x, y') + C_{\text{LHV}}(x', y) - C_{\text{LHV}}(x', y') \le 2$

Quantum Mechanics [Cirelson (1980)]

 $S_{\text{QM}} := C_{\text{QM}}(x, y) + C_{\text{QM}}(x, y') + C_{\text{QM}}(x', y) - C_{\text{QM}}(x', y') \le 2\sqrt{2}$

Michał Eckstein (UJ, Kraków, Poland)

Beyond quantum mechanics in HEP

Kraków, 11 May 2023 3 / 15

Э

SQA

イロト イヨト イヨト

2 parties (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

$$P(a, b \mid x, y)$$

The *experimental* (frequency) correlation function:

$$C_e(x,y) = \frac{N_{++} + N_{--} - N_{+-} - N_{-+}}{N_{++} + N_{--} + N_{+-} + N_{-+}}$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

Local hidden variables [Bell (1964) / Clauser, Horne, Shimony, Holt (1969)]

 $S_{\mathsf{LHV}} \coloneqq C_{\mathsf{LHV}}(x,y) + C_{\mathsf{LHV}}(x,y') + C_{\mathsf{LHV}}(x',y) - C_{\mathsf{LHV}}(x',y') \le 2$

Quantum Mechanics [Cirelson (1980)]

 $S_{\text{QM}} := C_{\text{QM}}(x, y) + C_{\text{QM}}(x, y') + C_{\text{QM}}(x', y) - C_{\text{QM}}(x', y') \le 2\sqrt{2}$

Michał Eckstein (UJ, Kraków, Poland)

Beyond quantum mechanics in HEP

Kraków, 11 May 2023 3 / 15

Э

SQA

イロト イヨト イヨト

2 parties (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

$$P(a, b \mid x, y)$$

The *experimental* (frequency) correlation function:

$$C_e(x,y) = \frac{N_{++} + N_{--} - N_{+-} - N_{-+}}{N_{++} + N_{--} + N_{+-} + N_{+-}}$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

Local hidden variables [Bell (1964) / Clauser, Horne, Shimony, Holt (1969)]

 $S_{1 HV} := C_{1 HV}(x, y) + C_{1 HV}(x, y') + C_{1 HV}(x', y) - C_{1 HV}(x', y') < 2$

Quantum Mechanics [Cirelson (1980)]

$$S_{\text{QM}} := C_{\text{QM}}(x, y) + C_{\text{QM}}(x, y') + C_{\text{QM}}(x', y) - C_{\text{QM}}(x', y') \le 2\sqrt{2}$$

Michał Eckstein (UJ, Kraków, Poland)

SQA

$$S \mathrel{\mathop:}= C(x,y) + C(x,y') + C(x',y) - C(x',y')$$

Can we achieve S = 4?

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

• no-signalling:
$$\sum_{b} P(a, b \mid x, y) = \sum_{b} P(a, b \mid x, y')$$
, for all a, x, y, y' , $\sum_{a} P(a, b \mid x, y) = \sum_{a} P(a, b \mid x', y)$, for all b, x, x', y ;

$$S \mathrel{\mathop:}= C(x,y) + C(x,y') + C(x',y) - C(x',y') \leq 4$$

Can we achieve S = 4?

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

• no-signalling:
$$\sum_{b} P(a, b \mid x, y) = \sum_{b} P(a, b \mid x, y')$$
, for all a, x, y, y' , $\sum_{a} P(a, b \mid x, y) = \sum_{a} P(a, b \mid x', y)$, for all b, x, x', y ;

$$S \coloneqq C(x,y) + C(x,y') + C(x',y) - C(x',y') \leq 4$$

Can we achieve S = 4?

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

• no-signalling:
$$\sum_{b} P(a, b \mid x, y) = \sum_{b} P(a, b \mid x, y')$$
, for all a, x, y, y' , $\sum_{a} P(a, b \mid x, y) = \sum_{a} P(a, b \mid x', y)$, for all b, x, x', y ;

$$S := C(x, y) + C(x, y') + C(x', y) - C(x', y') \le 4$$

Can we achieve S = 4? Obviously yes, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

• no-signalling:
$$\sum_{b} P(a, b \mid x, y) = \sum_{b} P(a, b \mid x, y')$$
, for all a, x, y, y' , $\sum_{a} P(a, b \mid x, y) = \sum_{a} P(a, b \mid x', y)$, for all b, x, x', y ;

$$S := C(x, y) + C(x, y') + C(x', y) - C(x', y') \le 4$$

Can we achieve S = 4? Obviously yes, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

• no-signalling:
$$\sum_{b} P(a, b \mid x, y) = \sum_{b} P(a, b \mid x, y'), \text{ for all } a, x, y, y', \\\sum_{a} P(a, b \mid x, y) = \sum_{a} P(a, b \mid x', y), \text{ for all } b, x, x', y ;$$

$$S := C(x, y) + C(x, y') + C(x', y) - C(x', y') \le 4$$

Can we achieve S = 4? Obviously yes, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

• no-signalling:
$$\sum_{b} P(a, b \mid x, y) = \sum_{b} P(a, b \mid x, y'), \text{ for all } a, x, y, y', \\\sum_{a} P(a, b \mid x, y) = \sum_{a} P(a, b \mid x', y), \text{ for all } b, x, x', y ;$$

$$S := C(x, y) + C(x, y') + C(x', y) - C(x', y') \le 4$$

Can we achieve S = 4? Obviously yes, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

• no-signalling:
$$\sum_{b} P(a, b \mid x, y) = \sum_{b} P(a, b \mid x, y'), \text{ for all } a, x, y, y', \\\sum_{a} P(a, b \mid x, y) = \sum_{a} P(a, b \mid x', y), \text{ for all } b, x, x', y ;$$

$$S := C(x, y) + C(x, y') + C(x', y) - C(x', y') \le 4$$

Can we achieve S = 4? Obviously yes, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

• no-signalling:
$$\sum_{b} P(a, b \mid x, y) = \sum_{b} P(a, b \mid x, y'), \text{ for all } a, x, y, y', \\ \sum_{a} P(a, b \mid x, y) = \sum_{a} P(a, b \mid x', y), \text{ for all } b, x, x', y ;$$

$$S := C(x, y) + C(x, y') + C(x', y) - C(x', y') \le 4$$

Can we achieve S = 4? Obviously yes, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

• no-signalling:
$$\sum_{b} P(a, b \mid x, y) = \sum_{b} P(a, b \mid x, y'), \text{ for all } a, x, y, y', \\ \sum_{a} P(a, b \mid x, y) = \sum_{a} P(a, b \mid x', y), \text{ for all } b, x, x', y ;$$

$$S := C(x,y) + C(x,y') + C(x',y) - C(x',y') \le 4 = S_{\mathsf{PR}} > S_{\mathsf{QM}} = 2\sqrt{2}$$

Can we achieve S = 4? **Obviously yes**, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

• no-signalling:
$$\begin{split} \sum_b P(a,b\,|\,x,y) &= \sum_b P(a,b\,|\,x,y'), \text{ for all } a,x,y,y', \\ \sum_a P(a,b\,|\,x,y) &= \sum_a P(a,b\,|\,x',y), \text{ for all } b,x,x',y ; \end{split}$$

Beyond-quantum correlations

• No-signalling boxes

[N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, *Rev. Mod. Phys.* **86**, 419 (2014)]

• 3-party monogamy violation

General Probabilistic Theories [G. Chiribella, R.W. Spekkens (Eds.), Quantum Theory: Informational Foundations and Foils, Springer, 2016]

Inspired by information-theoretic axiomatisation of QM

∃ ► < ∃ ►</p>

- Beyond-quantum correlations
 - No-signalling boxes

[N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, *Rev. Mod. Phys.* **86**, 419 (2014)]

• 3-party monogamy violation

General Probabilistic Theories [G. Chiribella, R.W. Spekkens (Eds.), Quantum Theory: Informational Foundations and Foils, Springer, 2016]

Inspired by information-theoretic axiomatisation of QM

- Beyond-quantum correlations
 - No-signalling boxes

[N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, *Rev. Mod. Phys.* **86**, 419 (2014)]

• 3-party monogamy violation

[P. Horodecki,
R. Ramanathan, *Nat. Comm.* **10**, 1701 (2019)]

General Probabilistic Theories [G. Chiribella, R.W. Spekkens (Eds.), Quantum Theory: Informational Foundations and Foils, Springer, 2016]

Inspired by information-theoretic axiomatisation of QM

- Beyond-quantum correlations
 - No-signalling boxes

[N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, *Rev. Mod. Phys.* **86**, 419 (2014)]

• 3-party monogamy violation

[P. Horodecki,
R. Ramanathan, *Nat. Comm.* **10**, 1701 (2019)]

General Probabilistic Theories [G. Chiribella, R.W. Spekkens (Eds.), Quantum Theory: Informational Foundations and Foils, Springer, 2016]

Inspired by information-theoretic axiomatisation of QM

- Beyond-quantum correlations
 - No-signalling boxes

[N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, *Rev. Mod. Phys.* **86**, 419 (2014)]

• 3-party monogamy violation

[P. Horodecki,
R. Ramanathan, *Nat. Comm.* **10**, 1701 (2019)]

- General Probabilistic Theories [G. Chiribella, R.W. Spekkens (Eds.), Quantum Theory: Informational Foundations and Foils, Springer, 2016]
 - Inspired by information-theoretic axiomatisation of QM

- Beyond-quantum correlations
 - No-signalling boxes

[N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, *Rev. Mod. Phys.* **86**, 419 (2014)]

• 3-party monogamy violation

[P. Horodecki,
R. Ramanathan, *Nat. Comm.* **10**, 1701 (2019)]

- General Probabilistic Theories [G. Chiribella, R.W. Spekkens (Eds.), Quantum Theory: Informational Foundations and Foils, Springer, 2016]
 - Inspired by information-theoretic axiomatisation of QM

Purely operational 'theories' - model-independent approach

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3 Wave function collapse models

A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)]

- Aimed at explaining the 'quantum-to-classical' transition.
- nonlinearity modified Schrödinger equation
- stochasticity 'collapse noise

3 Wave function collapse models

[A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)]

- Aimed at explaining the 'quantum-to-classical' transition.
- nonlinearity modified Schrödinger equation
- stochasticity 'collapse noise'

3 Wave function collapse models

[A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)]

- Aimed at explaining the 'quantum-to-classical' transition.
- nonlinearity modified Schrödinger equation
- stochasticity 'collapse noise'

3 Wave function collapse models

[A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)]

- Aimed at explaining the 'quantum-to-classical' transition.
- nonlinearity modified Schrödinger equation
- stochasticity 'collapse noise'

3 Wave function collapse models

[A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)]

- Aimed at explaining the 'quantum-to-classical' transition.
- nonlinearity modified Schrödinger equation
- stochasticity 'collapse noise'

Objective collapse models involve deviations from unitarity and linearity.

Beyond-quantum physics?

• Is there a gap between QM and QFT?

$$\begin{split} C_{qs} &= \left\{ \langle \psi | A_a^x \otimes B_b^y | \psi \rangle \right\}, \qquad \quad |\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B, \\ C_{qc} &= \left\{ \langle \psi | A_a^x B_b^y | \psi \rangle \right\}, \qquad \quad |\psi\rangle \in \mathcal{H} \text{ and } [A_a^x, B_b^y] = 0. \end{split}$$

 $C_{qs} \subsetneq C_{qc}$ [Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen, arXiv:2001.04383]

• Is QFT only an effective description of Nature at small scales?

Michał Eckstein (UJ, Kraków, Poland) Beyond

Beyond quantum mechanics in HEP

Kraków, 11 May 2023

Sac

7/15

イロト 不得 トイヨト イヨト 二日

Beyond-quantum physics?

• Is there a gap between QM and QFT?

$$\begin{split} C_{qs} &= \left\{ \langle \psi | A_a^x \otimes B_b^y | \psi \rangle \right\}, \qquad \quad |\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B, \\ C_{qc} &= \left\{ \langle \psi | A_a^x B_b^y | \psi \rangle \right\}, \qquad \quad |\psi\rangle \in \mathcal{H} \text{ and } [A_a^x, B_b^y] = 0. \end{split}$$

 $C_{qs} \subsetneq C_{qc}$ [Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen, arXiv:2001.04383]

• Is QFT only an effective description of Nature at small scales?

Michał Eckstein (UJ, Kraków, Poland) Beyond

Beyond quantum mechanics in HEP

Kraków, 11 May 2023

イロト 不得 トイヨト イヨト 二日
Beyond-quantum physics?

Is there a gap between QM and QFT?

$$\begin{split} C_{qs} &= \left\{ \langle \psi | A_a^x \otimes B_b^y | \psi \rangle \right\}, \qquad \quad |\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B, \\ C_{qc} &= \left\{ \langle \psi | A_a^x B_b^y | \psi \rangle \right\}, \qquad \quad |\psi\rangle \in \mathcal{H} \text{ and } [A_a^x, B_b^y] = 0. \end{split}$$

 $C_{as} \subseteq C_{ac}$ [Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen, arXiv:2001.04383]

• Is QFT only an effective description of Nature at small scales?

Michał Eckstein (UJ, Kraków, Poland)

Beyond quantum mechanics in HEP

Kraków, 11 May 2023 7/15

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のへで

Beyond-quantum physics?

• Is there a gap between QM and QFT?

$$\begin{split} C_{qs} &= \left\{ \langle \psi | A_a^x \otimes B_b^y | \psi \rangle \right\}, \qquad \quad |\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B, \\ C_{qc} &= \left\{ \langle \psi | A_a^x B_b^y | \psi \rangle \right\}, \qquad \quad |\psi\rangle \in \mathcal{H} \text{ and } [A_a^x, B_b^y] = 0. \end{split}$$

 $C_{qs} \subsetneq C_{qc}$ [Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen, arXiv:2001.04383]

• Is QFT only an effective description of Nature at small scales?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のへで

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \rightarrow \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements M : ρ_{out} → a.

イロト (得) (テト・ヨト・ヨ

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

イロト 不得 トイヨト イヨト 二日

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \rightarrow \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements M : ρ_{out} → a.

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

・ロト ・ 一 ト ・ 日 ト ・ 日 ト

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements M : ρ_{out} → a.

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

8/15

• p are classical parameters (e.g. scattering kinematics)

• The *pure input* state is **prepared**, $P: x \rightarrow \psi_{in}$.

The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements M : ρ_{out} → a.

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

[Nat. Phys. 10, 264 (2014)]

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \rightarrow \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M : \rho_{out} \rightarrow a$.

・ロト ・ 戸 ト ・ ヨ ト

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

[[]Nat. Phys. 10, 264 (2014)]

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M : \rho_{out} \rightarrow a$.

- We regard physical systems (e.g. a single nucleon) as **Q-data boxes**, i.e. quantum-information processing devices.
- A Q-data box is probed *locally* with quantum information.

[[]Nat. Phys. 10, 264 (2014)]

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M : \rho_{out} \rightarrow a$.

• □ ▶ < □ ▶ < □ ▶</p>

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- $\psi_{\rm in}$ is pure, uncorrelated with the box 'freedom of choice'.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
- Make multiple measurements and register $\{P(a_j \mid M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- $\psi_{\rm in}$ is pure, uncorrelated with the box 'freedom of choice'.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors {M_i}^{n²-1}_{i=1} (e.g. {σ_x, σ_y, σ_z}).
- Make multiple measurements and register $\{P(a_j \mid M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

・ロト ・雪 ト ・ヨ ト ・ ヨ ト ・ ヨ

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- $\psi_{\rm in}$ is pure, uncorrelated with the box 'freedom of choice'.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors {M_i}^{n²-1}_{i=1} (e.g. {σ_x, σ_y, σ_z}).
- Make multiple measurements and register $\{P(a_j \mid M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

- 日本 - 4 日本 - 4 日本 - 日本

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- $\psi_{\rm in}$ is pure, uncorrelated with the box 'freedom of choice'.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors {M_i}^{n²-1}_{i=1} (e.g. {σ_x, σ_y, σ_z}).
- Make multiple measurements and register $\{P(a_j \mid M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のへで

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- $\psi_{\rm in}$ is pure, uncorrelated with the box 'freedom of choice'.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors {M_i}^{n²-1}_{i=1} (e.g. {σ_x, σ_y, σ_z}).
- Make multiple measurements and register $\{P(a_j | M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のへで

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- $\psi_{\rm in}$ is pure, uncorrelated with the box 'freedom of choice'.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
- Make multiple measurements and register $\{P(a_j | M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークへで

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- $\psi_{\rm in}$ is pure, uncorrelated with the box 'freedom of choice'.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
- Make multiple measurements and register $\{P(a_j | M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- $\psi_{\rm in}$ is pure, uncorrelated with the box 'freedom of choice'.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
- Make multiple measurements and register $\{P(a_j \mid M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j \mid M_i)$.

Quantum state preparation:

- In principle, any quantum state can be prepared via proj. measurements.
- $\psi_{\rm in}$ is pure, uncorrelated with the box 'freedom of choice'.

Quantum state tomography:

- A mixed state ρ_{out} on \mathcal{H} is an $n \times n$ matrix, with $n = \dim \mathcal{H}$.
- Take a complete set of projectors $\{M_i\}_{i=1}^{n^2-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
- Make multiple measurements and register $\{P(a_j | M_i)\}_{i,j}$
- The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.

[J. Huwer et al., New J. Phys. 15, 025033 (2013)]

- For every input state ψ_{in} one needs to perform the full tomography of ρ_{out} .
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- The more tomographic measurements, the more reliable the test.
- The input ψ_{in} is pure, but the output ρ_{out} is *mixed*.

- For every input state ψ_{in} one needs to perform the full tomography of ρ_{out} .
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- The more tomographic measurements, the more reliable the test.
- The input ψ_{in} is pure, but the output ρ_{out} is *mixed*.

- For every input state ψ_{in} one needs to perform the full tomography of ρ_{out} .
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- The more tomographic measurements, the more reliable the test.
- The input ψ_{in} is pure, but the output ρ_{out} is *mixed*.

A Q-data test consists in probing a given Q-data box with prepared input states.

• For every input state ψ_{in} one needs to perform the full tomography of ρ_{out} .

- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- The more tomographic measurements, the more reliable the test.
- The input ψ_{in} is pure, but the output ρ_{out} is *mixed*.

A Q-data test consists in probing a given Q-data box with prepared input states.

• For every input state ψ_{in} one needs to perform the full tomography of ρ_{out} .

10/15

- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- The more tomographic measurements, the more reliable the test.

• The input ψ_{in} is pure, but the output ρ_{out} is *mixed*.

- For every input state $\psi_{\rm in}$ one needs to perform the full tomography of $\rho_{\rm out}.$
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- The more tomographic measurements, the more reliable the test.
- The input ψ_{in} is pure, but the output ρ_{out} is *mixed*.

- Suppose that we have two available inputs $\psi_{in}^{(1)}, \psi_{in}^{(2)}$.
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a = k | \psi_{\text{in}}^{(k)}).$
- In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\rm succ} \le P_{\rm succ}^{\rm QM} := \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\rm in}^{(1)} | \psi_{\rm in}^{(2)} \rangle \right|^2} \right) \,.$$

- Make a Q-data test with $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.

Violation of the Helstrom bound occurs in nonlinear modifications of QM.

Michał Eckstein (UJ, Kraków, Poland) Beyond quantum mechanics in HEP

= 990

11/15

イロト イボト イヨト イヨト

- Suppose that we have two available inputs $\psi_{in}^{(1)}, \psi_{in}^{(2)}$.
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a=k \mid \psi_{\text{in}}^{(k)}).$
- In quantum theory P_{succ} cannot exceed the **Helstrom bound**

$$P_{\rm succ} \le P_{\rm succ}^{\rm QM} := \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\rm in}^{(1)} | \psi_{\rm in}^{(2)} \rangle \right|^2} \right) \,.$$

- Make a Q-data test with $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.

Violation of the Helstrom bound occurs in nonlinear modifications of QM.

Michał Eckstein (UJ, Kraków, Poland) Beyond quantum mechanics in HEP

- Suppose that we have two available inputs $\psi_{in}^{(1)}, \psi_{in}^{(2)}$.
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a = k | \psi_{\text{in}}^{(k)}).$
- In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\rm succ} \le P_{\rm succ}^{\rm QM} := \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\rm in}^{(1)} | \psi_{\rm in}^{(2)} \rangle \right|^2} \right) \,.$$

- Make a Q-data test with $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.

Violation of the Helstrom bound occurs in nonlinear modifications of QM.

Michał Eckstein (UJ, Kraków, Poland) Beyond quantum mechanics in HEP

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のへで

- Suppose that we have two available inputs $\psi_{in}^{(1)}, \psi_{in}^{(2)}$.
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a=k \mid \psi_{\text{in}}^{(k)}).$
- In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\text{succ}} \leq P_{\text{succ}}^{\text{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\text{in}}^{(1)} | \psi_{\text{in}}^{(2)} \rangle \right|^2} \right) \,.$$

- Make a Q-data test with $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.

Violation of the Helstrom bound occurs in nonlinear modifications of QM.

Michał Eckstein (UJ, Kraków, Poland) Beyond quantum mechanics in HEP

- Suppose that we have two available inputs $\psi_{in}^{(1)}, \psi_{in}^{(2)}$.
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a=k \mid \psi_{\text{in}}^{(k)}).$
- In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\text{succ}} \leq P_{\text{succ}}^{\text{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\text{in}}^{(1)} | \psi_{\text{in}}^{(2)} \rangle \right|^2} \right)$$

- Make a Q-data test with $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.

Violation of the Helstrom bound occurs in nonlinear modifications of QM.

Michał Eckstein (UJ, Kraków, Poland) Beyond quantum mechanics in HEP

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のへで

- Suppose that we have two available inputs $\psi_{in}^{(1)}, \psi_{in}^{(2)}$.
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a=k \mid \psi_{\text{in}}^{(k)}).$
- In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\text{succ}} \leq P_{\text{succ}}^{\text{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\text{in}}^{(1)} | \psi_{\text{in}}^{(2)} \rangle \right|^2} \right)$$

- Make a Q-data test with $\left\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\right\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のへで

11/15

Kraków, 11 May 2023

Violation of the Helstrom bound occurs in nonlinear modifications of QM.

Michał Eckstein (UJ, Kraków, Poland) Beyond quantum mechanics in HEP

- Suppose that we have two available inputs $\psi_{\rm in}^{(1)}, \psi_{\rm in}^{(2)}.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a=k \mid \psi_{\text{in}}^{(k)}).$
- In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\text{succ}} \leq P_{\text{succ}}^{\text{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\text{in}}^{(1)} | \psi_{\text{in}}^{(2)} \rangle \right|^2} \right)$$

- Make a Q-data test with $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.

Violation of the Helstrom bound occurs in nonlinear modifications of QM.

Michał Eckstein (UJ, Kraków, Poland) Beyond quantum mechanics in HEP

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のへで

- Suppose that we have two available inputs $\psi_{\rm in}^{(1)}, \psi_{\rm in}^{(2)}.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}) := \frac{1}{2}\sum_{k=1}^{2} P(a=k \mid \psi_{\text{in}}^{(k)}).$
- In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\text{succ}} \leq P_{\text{succ}}^{\text{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\text{in}}^{(1)} | \psi_{\text{in}}^{(2)} \rangle \right|^2} \right)$$

- Make a Q-data test with $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ● ●

• Violation of the Helstrom bound occurs in nonlinear modifications of QM.

QM implies that any quantum channel, i.e. a map E : S(H_{in}) → S(H_{out}) is completely positive trace preserving (CPTP).

Kraus' theorem

For every CPTP map $\mathcal{E}: S(\mathcal{H}_{in}) \to S(\mathcal{H}_{out})$ there exists a (non-unique) set of operators $\{K_i\}_{i \leq mn}$, where $m = \dim \mathcal{H}_{in}, n = \dim \mathcal{H}_{out}$, such that

$$\mathcal{E}(\rho) = \sum_{i} K_i \rho K_i^{\dagger}$$
 and $\sum_{i} K_i^{\dagger} K_i = \mathrm{id}.$

Choi-Jamiołkowski isomorphism (aka channel-state duality)

 ${\mathcal E}$ is CPTP if and only if $\widetilde{{\mathcal E}}=rac{1}{m}\sum_{i,j=1}^m |i
angle\langle j|\otimes {\mathcal E}(|i
angle\langle j|)\in {\mathbb C}^{mn imes mn}$ is a state.

• We can test QM by checking the CPTP property.

イロト イボト イヨト イヨト

Quantum process tomography

QM implies that any quantum channel, i.e. a map *E* : S(*H*_{in}) → S(*H*_{out}) is completely positive trace preserving (CPTP).

Kraus' theorem

For every CPTP map $\mathcal{E}: S(\mathcal{H}_{in}) \to S(\mathcal{H}_{out})$ there exists a (non-unique) set of operators $\{K_i\}_{i \leq mn}$, where $m = \dim \mathcal{H}_{in}, n = \dim \mathcal{H}_{out}$, such that

$$\mathcal{E}(\rho) = \sum_{i} K_i \rho K_i^{\dagger}$$
 and $\sum_{i} K_i^{\dagger} K_i = \mathrm{id}.$

Choi-Jamiołkowski isomorphism (aka channel-state duality)

 ${\mathcal E}$ is CPTP if and only if $\widetilde{{\mathcal E}}=rac{1}{m}\sum_{i,j=1}^m |i
angle\langle j|\otimes {\mathcal E}(|i
angle\langle j|)\in {\mathbb C}^{mn imes mn}$ is a state.

• We can test QM by checking the CPTP property.

イロト 不得 トイヨト イヨト 二日

Quantum process tomography

QM implies that any quantum channel, i.e. a map *E* : S(*H*_{in}) → S(*H*_{out}) is completely positive trace preserving (CPTP).

Kraus' theorem

For every CPTP map $\mathcal{E}: S(\mathcal{H}_{in}) \to S(\mathcal{H}_{out})$ there exists a (non-unique) set of operators $\{K_i\}_{i \leq mn}$, where $m = \dim \mathcal{H}_{in}, n = \dim \mathcal{H}_{out}$, such that

$$\mathcal{E}(\rho) = \sum_{i} K_i \rho K_i^{\dagger}$$
 and $\sum_{i} K_i^{\dagger} K_i = \mathrm{id.}$

Choi-Jamiołkowski isomorphism (aka channel-state duality)

 ${\mathcal E}$ is CPTP if and only if $\widetilde{{\mathcal E}}=rac{1}{m}\sum_{i,j=1}^m |i
angle\langle j|\otimes {\mathcal E}(|i
angle\langle j|)\in {\mathbb C}^{mn imes mn}$ is a state.

• We can test QM by checking the CPTP property.

Michał Eckstein (UJ, Kraków, Poland) Beyc

Beyond quantum mechanics in HEP

Quantum process tomography

QM implies that any quantum channel, i.e. a map *E* : S(*H*_{in}) → S(*H*_{out}) is completely positive trace preserving (CPTP).

Kraus' theorem

For every CPTP map $\mathcal{E}: S(\mathcal{H}_{in}) \to S(\mathcal{H}_{out})$ there exists a (non-unique) set of operators $\{K_i\}_{i \leq mn}$, where $m = \dim \mathcal{H}_{in}, n = \dim \mathcal{H}_{out}$, such that

$$\mathcal{E}(\rho) = \sum_{i} K_i \rho K_i^{\dagger}$$
 and $\sum_{i} K_i^{\dagger} K_i = \mathrm{id.}$

Choi–Jamiołkowski isomorphism (aka channel–state duality)

 \mathcal{E} is CPTP if and only if $\widetilde{\mathcal{E}} = \frac{1}{m} \sum_{i,j=1}^{m} |i\rangle \langle j| \otimes \mathcal{E}(|i\rangle \langle j|) \in \mathbb{C}^{mn \times mn}$ is a state.

• We can test QM by checking the CPTP property.

Michał Eckstein (UJ, Kraków, Poland)

Beyond quantum mechanics in HEP
QM implies that any quantum channel, i.e. a map *E* : S(*H*_{in}) → S(*H*_{out}) is completely positive trace preserving (CPTP).

Kraus' theorem

For every CPTP map $\mathcal{E}: S(\mathcal{H}_{in}) \to S(\mathcal{H}_{out})$ there exists a (non-unique) set of operators $\{K_i\}_{i \leq mn}$, where $m = \dim \mathcal{H}_{in}, n = \dim \mathcal{H}_{out}$, such that

$$\mathcal{E}(\rho) = \sum_{i} K_i \rho K_i^{\dagger}$$
 and $\sum_{i} K_i^{\dagger} K_i = \mathrm{id.}$

Choi–Jamiołkowski isomorphism (aka channel–state duality)

 \mathcal{E} is CPTP if and only if $\widetilde{\mathcal{E}} = \frac{1}{m} \sum_{i,j=1}^{m} |i\rangle \langle j| \otimes \mathcal{E}(|i\rangle \langle j|) \in \mathbb{C}^{mn \times mn}$ is a state.

We can test QM by checking the CPTP property.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ● ●

- \mathcal{E} is completely characterised by $m^2(n^2-1)$ real parameters.
- \mathcal{E} can be reconstructed from a **Q-data test** $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_k$, for $k = 1, \dots, m^2$.

< □ > < 同 >

글 눈 옷 글 눈 드 글.

500

- \mathcal{E} is completely characterised by $m^2(n^2-1)$ real parameters.
- \mathcal{E} can be reconstructed from a **Q-data test** $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_k$, for $k = 1, \dots, m^2$.

- \mathcal{E} is completely characterised by $m^2(n^2-1)$ real parameters.
- \mathcal{E} can be reconstructed from a **Q-data test** $\left\{\psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)}\right\}_k$, for $k = 1, ..., m^2$.

[R. Bialczak et al., Nature Physics 6, 409 (2010)]

Michał Eckstein (UJ, Kraków, Poland)

Beyond quantum mechanics in HEP

Kraków, 11 May 2023

- $\ensuremath{\textcircled{}}\ensuremath{\\}\ensuremath{\textcircled{}}\ensuremath{\\}\ensurem$
- ② Scatter it on a target.
- Perform projective measurements on the outgoing projectiles.
- (d) Reconstruct the output state ρ_{out} .

Main challenges:

- Need to prepare the quantum state of GeV particles \rightsquigarrow polarized beams
- Abundance of projectiles in high-energy collisions \rightsquigarrow elastic scattering
- Quantum tomography of the final state → high spin analysing power
 For example, in W → ℓν process the direction of ℓ strongly depends on the W's spin state. [A. Barr, Phys. Lett. B 825 136866 (2022)]

Sac

イロト 不得 トイヨト イヨト 二日

- Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.
- ψ_{in}

- Scatter it on a target.
- Perform projective measurements on the outgoing projectiles.
- (d) Reconstruct the output state ρ_{out} .

Main challenges:

- ullet Need to prepare the quantum state of GeV particles \leadsto polarized beams
- ullet Abundance of projectiles in high-energy collisions \sim elastic scattering
- Quantum tomography of the final state \rightsquigarrow high spin analysing power For example, in $W \rightarrow \ell \nu$ process the direction of ℓ strongly depends on the W's spin state. [A. Barr, *Phys. Lett. B* **825** 136866 (2022)]

Sac

イロト (得) (テト・ヨト・ヨ

- Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.
- ② Scatter it on a target.
- Perform projective measurements on the outgoing projectiles.
- (d) Reconstruct the output state ρ_{out} .

Main challenges:

- Need to prepare the quantum state of GeV particles ~> polarized beams
- Abundance of projectiles in high-energy collisions ~> elastic scattering
- Quantum tomography of the final state → high spin analysing power
 For example, in W → lν process the direction of l strongly depends on the W's spin state. [A. Barr, Phys. Lett. B 825 136866 (2022)]

・ロト ・ 一 ト ・ ヨ ト

- Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.
- ② Scatter it on a target.
- Perform projective measurements on the outgoing projectiles.
- Reconstruct the output state ρ_{out}.

Main challenges:

- Need to prepare the quantum state of GeV particles ~> polarized beams
- Abundance of projectiles in high-energy collisions ~- elastic scattering
- Quantum tomography of the final state → high spin analysing power
 For example, in W → ℓν process the direction of ℓ strongly depends on the W's spin state. [A. Barr, Phys. Lett. B 825 136866 (2022)]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.
- ② Scatter it on a target.
- Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

Main challenges:

- ullet Need to prepare the quantum state of GeV particles \leadsto polarized beams
- Abundance of projectiles in high-energy collisions ~~ elastic scattering
- Quantum tomography of the final state → high spin analysing power
 For example, in W → ℓν process the direction of ℓ strongly depends on the W's spin state. [A. Barr, Phys. Lett. B 825 136866 (2022)]

・ロト ・ 一 ト ・ ヨ ト

- Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.
- ② Scatter it on a target.
- Perform projective measurements on the outgoing projectiles.
- **9** Reconstruct the output state ρ_{out} .

Main challenges:

- ullet Need to prepare the quantum state of GeV particles \leadsto polarized beams
- Abundance of projectiles in high-energy collisions ~> elastic scattering
- Quantum tomography of the final state → high spin analysing power
 For example, in W → ℓν process the direction of ℓ strongly depends on the W's spin state. [A. Barr, Phys. Lett. B 825 136866 (2022)]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.
- ② Scatter it on a target.
- Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

Main challenges:

- Need to prepare the quantum state of GeV particles \rightsquigarrow polarized beams
- Abundance of projectiles in high-energy collisions ~-> elastic scattering
- Quantum tomography of the final state → high spin analysing power
 For example, in W → ℓν process the direction of ℓ strongly depends on the W's spin state. [A. Barr, Phys. Lett. B 825 136866 (2022)]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.
- ② Scatter it on a target.
- Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

Main challenges:

・ロト ・ 一 ト ・ ヨ ト

- Need to prepare the quantum state of GeV particles \rightsquigarrow polarized beams
- Abundance of projectiles in high-energy collisions ~~ elastic scattering
- Quantum tomography of the final state → high spin analysing power
 For example, in W → lv process the direction of l strongly depends on the W's spin state. [A. Barr, Phys. Lett. B 825 136866 (2022)]

- Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.
- ② Scatter it on a target.
- Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

Main challenges:

- Need to prepare the quantum state of GeV particles \rightsquigarrow polarized beams
- Abundance of projectiles in high-energy collisions ~> elastic scattering
- Quantum tomography of the final state → high spin analysing power
 For example, in W → ℓν process the direction of ℓ strongly depends on the W's spin state. [A. Barr, Phys. Lett. B 825 136866 (2022)]

- Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.
- ② Scatter it on a target.
- Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

Main challenges:

- \bullet Need to prepare the quantum state of GeV particles \rightsquigarrow polarized beams
- Abundance of projectiles in high-energy collisions ~> elastic scattering
- Quantum tomography of the final state → high spin analysing power
 For example, in W → ℓν process the direction of ℓ strongly depends on the W's spin state. [A. Barr, Phys. Lett. B 825 136866 (2022)]

- Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.
- ② Scatter it on a target.
- Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

Main challenges:

- Need to prepare the quantum state of GeV particles \rightsquigarrow polarized beams
- Abundance of projectiles in high-energy collisions ~> elastic scattering
- $\bullet\,$ Quantum tomography of the final state \rightsquigarrow high spin analysing power

For example, in $W \rightarrow \ell \nu$ process the direction of ℓ strongly depends on the W's spin state. [A. Barr, *Phys. Lett. B* **825** 136866 (2022)]

Michał Eckstein (UJ, Kraków, Poland) Beyond quantum mechanics in HEP

Sac

・ロト ・ 雪 ト ・ ヨ ト ・ コ ト

- Prepare a 'quantum-programmed' particle carrying ψ_{in} , e.g. electron's spin or photon's polarization.
- ② Scatter it on a target.
- Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

Main challenges:

- Need to prepare the quantum state of GeV particles \rightsquigarrow polarized beams
- Abundance of projectiles in high-energy collisions ~> elastic scattering
- Quantum tomography of the final state \rightsquigarrow high spin analysing power For example, in $W \rightarrow \ell \nu$ process the direction of ℓ strongly depends on the W's spin state. [A. Barr, *Phys. Lett. B* **825** 136866 (2022)]

・ロト ・ 一 ト ・ ヨ ト

Sac

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Whenever we are doing a Bell-type test, we are testing QM against *both* local hidden variables and **beyond-quantum correlations**.
- Need for quantum process tomography:
 - Seeking deviations from unitarity and linearity.
 - Understanding quantum dynamics at subnuclear scales.

Thank you for your attention!

ヨトィヨト

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Whenever we are doing a Bell-type test, we are testing QM against *both* local hidden variables and **beyond-quantum correlations**.
- Need for quantum process tomography:
 - Seeking deviations from unitarity and linearity.
 - Understanding quantum dynamics at subnuclear scales.

Thank you for your attention!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Whenever we are doing a Bell-type test, we are testing QM against *both* local hidden variables and **beyond-quantum correlations**.
- Need for quantum process tomography:
 - Seeking deviations from unitarity and linearity.
 - Understanding quantum dynamics at subnuclear scales.

Thank you for your attention!

・ロト ・雪 ト ・ヨ ト ・ ヨ ト

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Whenever we are doing a Bell-type test, we are testing QM against *both* local hidden variables and **beyond-quantum correlations**.
- Need for quantum process tomography:
 - Seeking deviations from unitarity and linearity.
 - Understanding quantum dynamics at subnuclear scales.

Thank you for your attention!

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Whenever we are doing a Bell-type test, we are testing QM against *both* local hidden variables and **beyond-quantum correlations**.
- Need for quantum process tomography:
 - Seeking deviations from unitarity and linearity.
 - Understanding quantum dynamics at subnuclear scales.

Thank you for your attention!

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Whenever we are doing a Bell-type test, we are testing QM against *both* local hidden variables and **beyond-quantum correlations**.
- Need for quantum process tomography:
 - Seeking deviations from unitarity and linearity.
 - Understanding quantum dynamics at subnuclear scales.

Thank you for your attention!

◆□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶