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Motivation

The subject of Physics encompasses a massive range of phenomena and concepts

from sub-atomic particles to the observable universe

diverse in length-scales... 1
diverse in time-scales...

Different fields to explore
diverse in energy-scales.. J

e.g., energy-scales (in eV) for a few prominent fields of physics...

Ultra-cold atomic physics
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Motivation

Interface between Quantum Information and Comtaton Science
and Quantum Many-Body Physics

Expé’;imental realization of QIC tasks needs QMB
Fe.g., .
1. ultra-cold neutral atoms (Bloch, Dalibard, Zwerger, RMP °08) | ™
2. trapped ions (Leibfried, Blatt, Monroe, Wineland, RMP 03;
| Simon, Kim, Bryan, RMP ‘12)

3. superconducting qubits (Girvin, Schoelkopf, RMP *11;
Deyvitt, Munro, Nemoto, ROPP ’13)
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Motivation

Interface between Quantum Information and Computation Science

and Quantum Many-Body Physics
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We can use concepts/results from QIC to analyze
QMB systems

e.g.,
1. Quantum Simulation of QMB systems

2. Tensor Network methods to tackle QMB problems




Quantum Simulations

quantum
.. h Not enough memory to complete this/\operation.

Proposed by Yuri Manin and Richard Feynman around ~ 1980s

l OK l

T T
'Analf)g/slm;iflg;lan‘siﬁ

'Dig‘/i/t/a,l Slm,lﬂg;lons
Unitary (or any other) operators are simulated “True quantum simulations™

using quantum gates 1n a quantum circuit An ‘analogous’ synthetic system are tuned to

—TH o mimic the physics of a ‘target system’

e ~ g TH1p=THzp—TH3

1 Very successful in simulating solid state physics

I I R I B Solid crystal Optical lattice system

| | | Circuit-
Depth

| Scalability problems:
1. in physical dimensions

- 2 - electron
2. 1n range of interactions | |
. : periodic potential Periodic potential
3. 1n system-size made by ions made by optical

Interference

4. 1n time




Quantum Simulations

“True quantum simulations”

An ‘analogous’ synthetic system are tuned to
mimic the physics of a ‘target system’

Solid crystal Optical lattice system

electron
periodic potential Periodic potential
made by ions made by optical
interference

Successful in quantum

simulating theoretical models, like

1. Bose- and Fermi-Hubbard models

2. Isotropic Heisenberg model

3. Ising model (thanks to tilted optical lattice
and then to Rydberg systems)

4. And very recently, anisotropic XXZ model
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Quantum simulations with ultracold atoms in optical
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Quantum simulations with ultracold quantum gases

Immanuel Bloch &4, Jean Dalibard & Sylvain Nascimbéne

Nature Physics 8, 267-276 (2012) | Cite this article
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Ultracold atomic gases in optical lattices:
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mimicking condensed matter physics and beyond
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Quantum Simulations o sreomsnene fvin G
’/-» As in ‘analogous’ Quantum simulations with ultracold atoms in optical

- | lattices

CHRISTIAN GROSS AND IMMANUEL BLOCH

“True quantum simulations”

SCIENCE - 8 Sep 2017 - Vol 357,Issue 6355 - pp.995-1001 - DOI:10.1126/science.aal3837

Published: 02 April 2012

The Coming Decades of Quantum Simulation

Joana Fraxanet, Tymoteusz Salamon, Maciej Lewenstein

Contemporary quantum technologies face major difficulties in fault tolerant quantum computing with error correction, and focus instead on various shades of
quantum simulation (Noisy Intermediate Scale Quantum, NISQ) devices, analogue and digital qguantum simulators and quantum annealers. There is a clear need and
qguest for such systems that, without necessarily simulating quantum dynamics of some physical systems, can generate massive, controllable, robust, entangled, and
superposition states. This will, in particular, allow the control of decoherence, enabling the use of these states for quantum communications (e.g. to achieve efficient
transfer of information in a safer and quicker way), quantum metrology, sensing and diagnostics (e.g. to precisely measure phase shifts of light fields, or to diagnose
guantum materials). In this Chapter we present a vision of the golden future of quantum simulators in the decades to come.

ho

Subjects: Quantum Physics (quant-ph); Quantum Gases (cond-mat.quant-gas)
Cite as: arXiv:2204.08905 [quant-ph]

(or arXiv:2204.08905v1 [quant-ph for this version) We can even simulate synthetic phases/transitions
, h ://doi. 10.48550/arXiv.2204.08905 o
S ps//coror/ o o of matter that does not have any counterpart in
simulating theoretical models, like BN (Jd nature, or the natural counterpart hasn’t been
1. Bose- and Fermi-Hubbard models opticallz discovered yet!!

2. Isotropic Heisenberg model

3. Ising model (thanks to tilted optical lattice
and then to Rydberg systems)

4. And very recently, anisotropic XXZ model

Florian Schafer ™

Nature Reviews F e.g., (SpOiler alert! !) SUSY

2833 Accesses

81 Citations | 15 Altmetric | Metrics




Quantum Simulations
As 1n ‘analogous’

d &

“True quantum simulations”

An ‘analogous’ synthetic system are tuned to
mimic the physics of a ‘target system’

Solid crystal Optical lattice system

electron

periodic potential Periodic potential

made by ions made by optical
interference

Successful in quantum

simulating theoretical models, like

1. Bose- and Fermi-Hubbard models

2. Isotropic Heisenberg model

3. Ising model (thanks to tilted optical lattice
and then to Rydberg systems)

4. And very recently, anisotropic XXZ model

1. Theoretical propositions of experimental setups

2. Theoretical analysis of strongly-correlated many-body systems
that are within the reach of present day experiments

(in turn, we peak the interests of our experimental colleagues
to quantum simulate the respective systems)

Needs algorithms for classical simulations...

1. Exact diagonalization...

2. Mean field theories, including DMFT

3. Several types of Monte-Carlo: Classical, Quantum...
4. Density functional theory...

5. Tensor Network Algorithms...

where we come 1n along with
the 1deas from Quantum Information



Tensor Networks
Goal: Efficient representation of quantum many-body states

N body quantum state — Hilbert space dimension = av , exponential in system size

A generic quantum state... [P) = ) Gy i, iv|l1l203...Iy)

11,l2,13.,IN
~——— d" terms, inefficient!!



Tensor Networks
Goal: Efficient representation of quantum many-body states

N body quantum state — Hilbert space dimension = aV , exponential 1n system size

A generic quantum state... [P) = ) Gy i, iv|l1l203...Iy)
11,l2,13.,IN
~——— " terms, inefficient!!

Tensor Network: Efficient representation of quantum many-body states with po/y(N) terms
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Volume 349, October 2014, Pages 117-158

The density-matrix renormalization group

EISERIER in the age of matrix product states product states
. . . il il . _ Sebastian Paeckel 2, Thomas Kéhler  °, Andreas Swoboda €, Salvatore R. Manmana 2, Ulrich
A practical introduction to tensor U solvecs~ SciPost Physics Lecture Notes Schollwck & ¢ Claudius Hubig & ¢ 2 =

networks: Matrix product states and
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projected entangled pair states

The Tensor Networks Anthology: Simulation techniques for many-body quantum lattice systems

Pietro Silvi, Ferdinand Tschirsich, Matthias Gerster, Johannes Jiinemann, Daniel Jaschke, Matteo Rizzi, Simone Montangero
SciPost Phys. Lect. Notes 8 (2019) - published 18 March 2019

Roman Orls & X




Tensor Networks

Tensor Network: Efficient representation of quantum many-body states with po/ly(N) terms

Providing answers to long-standing open problems

Haldane spin-gap in
ndl materils physics spin-1 Heisenberg chain

covering conaensed matter and materials ( G5

Highlights Recent Accepted Collections Authors Referees Search Press About

Access by Marie Curie Library - The Abdus Salam

Numerical renormalization-group study of low-lying eigenstates of
the antiferromagnetic S=1 Heisenberg chain

Steven R. White and David A. Huse
Phys. Rev. B 48, 3844 — Published 1 August 1993

Conclusive evidence of stripe
order 1n 2D Hubbard model
Stripe order in the underdoped region of the two-dimensional

Hubbard model

BO-XIAO ZHENG @ , CHIA-MIN CHUNG
REINHARD M. NOACK ®, HAO SHI

8@ RESEARCH ARTICLE
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Authors Info & Affiliations

, GEORG EHLERS ®, MING-PU QIN
, [...] GARNET KIN-LIC CHAN

+1 authors

SCIENCE - 1 Dec 2017 - Vol 358, Issue 6367 - pp. 1155-1160 - DOI: 10.1126/science.aam7127

@ REPORT f ¥ in & R =

Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg
Antiferromagnet
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SCIENCE - 28 Apr 2011 - Vol 332, Issue 6034 - pp.1173-1176 - DOI

PHYSICAL REVIEW LETTERS

Quantum spin liquids in
frustrated antiferromagnets

Recent Collections Authors Referees Search Press About
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Access by Marie Curie Library - The Abdus Salam Inf

Nature of the Spin-Liquid Ground State of the S = 1/2 Heisenberg
Model on the Kagome Lattice

Stefan Depenbrock, lan P. McCulloch, and Ulrich Schollwock
Phys. Rev. Lett. 109, 067201 — Published 7 August 2012

PHYSICAL REVIEW X

‘Hard’ problems 1n strongly
correlated systems

Highlights Recent Subjects Accepted Collections

Solutions of the Two-Dimensional Hubbard Model: Benchmarks
and Results from a Wide Range of Numerical Algorithms

J.P.F. LeBlanc, Andrey E. Antipov, Federico Becca, Ireneusz W. Bulik, Garnet Kin-Lic Chan, Chia-Min Chung,
Youjin Deng, Michel Ferrero, Thomas M. Henderson, Carlos A. Jiménez-Hoyos, E. Kozik, Xuan-Wen Liu, Andrew
J. Millis, N. V. Prokof’ev, Mingpu Qin, Gustavo E. Scuseria, Hao Shi, B. V. Svistunoy, Luca F. Tocchio, I. S. Tupitsyn,
Steven R. White, Shiwei Zhang, Bo-Xiao Zheng, Zhenyue Zhu, and Emanuel Gull (Simons Collaboration on the
Many-Electron Problem)

Phys. Rev. X 5, 041041 — Published 14 December 2015



Tensor Networks

Tensors = Multi-dimensional arrays =

L,J




Tensor Networks

Tensors = Multi-dimensional arrays =

O L@ L

Scalar € Vector v; Matrix M;;
rank O rank 1 rank 2

Do not need to write down formulas with tensors with many indices



Tensor Networks

Tensors = Multi-dimensional arrays * 0 C(l] Jl,B
l- i ] . .

Scalar ¢ Vector v; Matrix M;; Ajjk Bijki
rank O rank 1 rank 2 rank 3 rank 4

Do not need to write down formulas with tensors with many indices

Examples...

l]ZkAmlkBU Cin = Ty SVD, T iy = Z Uum S

Connected lines: sum over corresponding indices



Tensor Networks

ZAca] jip

Tensors = Multi-dimensional arrays =

d" terms. ..

A generic quantum state... [) = Y} Cj i, iy llil2l3 - Iy) =

gz <Physical indices
l1,l2,l3.,lN

L1 %, L3 Ly IN—-1 ln



Tensor Networks

Tensors = Multi-dimensional arrays =

A generic quantum state... [) =

b

11,l2,l3.,IN

ClllzlglN 111213- .. lN) T

<Physical indices
SfEgEsszesla sncesen teasenaay ) IN—-1 In

Decomposition in terms of
a network of smaller tensors

«—Virtual (bond/link)
indices

<Physical indices

Ly



Tensor Networks

l
Tensors = Multi-dimensional arrays = * Oﬁ i Z Aaiijiﬁ
l,]

d" terms. ..

A generic quantum state... |y) = Z Ciii iyl i1bals - - - By) =

I150,l3..,1 1 ] ] ] ] ]
sttty bt ol s IN-1 N

A simple example... generic two qubit state... |y) =a|00) + b|01) +c|10) +d|11) = ’ =

}
= ?ﬁ[ﬁ "} 4’=[ﬁ ”’“5] — 0

0 vd c/\yd /d

Not a unique decomposition... Gauge freedom of TN...

«Physical indices




Tensor Networks

l
Tensors = Multi-dimensional arrays = * EOi i Z Aaiijiﬁ
l,]

d" terms. ..

A generic quantum state... |y) = Z Ciiiy iyl L1003 - - - By) =

Lslyslgeesly ll 12 l3 l4 lN—l lN

«Physical indices

(100...0) + |11...1)) =

HEd
V2




Tensor Networks

Tensors = Multi-dimensional arrays =

A generic quantum state... [Y) = ) G i, iv|l1l2l3...IN) =

ey <Physical indices
l1,l2,l3.,lN

L1 %, L3 Ly IN—-1 ln

Decomposition in terms of
a network of smaller tensors

d"V terms... still (!!)

«—V1rtual (bond/link)
indices

<Physical indices

Ly



Tensor Networks

Tensors = Multi-dimensional arrays =

A generic quantum state... [Y) = ) G i, iv|l1l2l3...IN) =

L4 <—Physical indices
l1,l2,l3.,lN

L1 %, L3 Ly IN—-1 ln

Decomposition in terms of
a network of smaller tensors

Key Idea:

1. Systematically restricting the virtual dimensions d" terms... still (!!)

= No. of terms in TN ~ poly(N)

Virtual (bond/link)

2. A variational ansatz for the many-body indices

wavefunction

<Physical indices

Ly



Tensor Networks
Key Idea:

m d" terms
o o o

Decomposition in terms of
a network of smaller tensors

1. Systematically restricting the virtual dimensions

= No. of terms in TN ~ poly(N)

2. A varational ansatz for the many-body

T

wavetunction z d N/2-1 2
. \ \ )

Matrix-product states (MPS)
d"V terms... still (!!)



Tensor Networks
Key Idea: 7

1. Systematically restricting the virtual dimensions
= No. of terms in TN ~ poly(N)

2. A varational ansatz for the many-body
wavefunction

Instead... an MPS with maximum bond dimension y

=¥

Number of non-zero elements < Nd y* How do !\ggg/lfetermme the value oty 7
Linear in system-size (!!!) g o 7

riction.

That is the ‘systematic’ part of the rest

7
-



Tensor Networks Why it works!!!

Key Idea: : .
y The answer comes from quantum information theory

1. Systematically restricting the virtual dimensions
Specifically, from the entanglement structure of low-lying

eigenstates of many-body Hamiltonians. ..

= No. of terms in TN ~ poly(N)

2. A varational ansatz for the many-body
wavefunction They follow Area-law of entanglement

Entanglement grows proportional to the Area of the
bipartition, not the volume.




Tensor Networks Why it works!!!
Key Idea: f

The answer comes from quantum 1nformation theory

1. Systematically restricting the virtual dimensions

= No. of terms in TN ~ pol(N) Specifically, from the entanglement structure of low-lying

eigenstates of many-body Hamiltonians. ..

A variational ansatz for the many-body

wavefunction They follow Area-law of entanglement
Entanglement grows proportional to the Area of the
bipartition, not the volume.

Renormalization of entanglement content or
‘entanglement degrees of freedom’

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press About

Access by Marie Curie Library - The Abdus Salam

Density matrix formulation for guantum renormalization groups

Steven R. White
Phys. Rev. Lett. 69, 2863 — Published 9 November 1992

An article within the collection: Letters from the Past - A PRL Retrospective

‘where all of these started...



Tensor Networks Tree tensor network (TTN)

Various types... for different systems/geometries

Matrix-product states (MPS)

;i s s B B

Multi-scale entanglement renormalization ansatz (MERA)

Projected entangled pair states (PEPS)

Annals of Physics 326,96 (2011)
Annals of Physics 349,117 (2014)
Annals of Physics 411, 167998 (2019)
SciPost Phys. Lect. Notes 8 (2019)
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Tensor Networks Tree tensor network (TTN)

Various types... for different systems/geometries

Matrix-product states (MPS)

J F 4
4 &

State of the Art algorithms...

For equilibrium physics...
Different variations of density-matrix renormalization group (DMRG) methods

Projected entangled pair states (PEPS)

Out-of-equilibrium...
1. Time-evolving block decimation (TEBD) (~2004)

2. Tangent-space method of time-dependent variational principle (TDVP) (2011 - 2016)

1. Annals of Physics 326, 96 (2011)

2. Annals of Physics 349, 117 (2014)

3. Annals of Physics 411, 167998 (2019)
4. SciPost Phys. Lect. Notes 8 (2019)




An entirely new domain...

uantum simulations and tensor networks are successful in strongly-correlated many-body systems... Great... but...

Can we simulate High-Energy Physics described
by gauge theories??

1. Interdisciplinary

2. Source of new ideas —
(a) conceptual understanding
(b) numerical developments
(c) experimental advancements

‘,v‘\“‘\s\“‘}

i
seletnneiietas
ISR




An entirely new domain...

Quantum simulations and tensor networks are successful in strongly-correlated many-body systems... Great... but...

Can we simulate High-Energy Physics described
by gauge theories??

1. Interdisciplinary

2. Source of new 1ideas —
(a) conceptual understanding
(b) numerical developments
(c) experimental advancements
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Simulating lattice gauge theories within quantum technologies
Q o - Maciej Lewenstein
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Gauge Theories on Lattice

Standard Model of Elementary Particles

three generations of matter

interactions / force carriers

(fermions) (bosons)
Gauge Theories —> Theories with Local conservation laws (Gauss law) et e
@ |I-@® |- @ J { Q |- H
. . up charm top gluon higgs
e.g., classical electrodynamics ... U (1) gauge theory ;J e
. @ |F® |F® || @
(Quantum) Gauge theories came in the form of quantum electrodynamics, down || strange || bottom | photon
nOn-Abelian Yang'MillS theOriCS etC. _=10.511MeV/c2 _=1105.66MeV/c2 _=11.7768GeV/c2 0=91.19c;ev1cz . 0
% = % I..l " T 1 a =
’ @)
4 ! : . electrci) muon;J tau ] lz boson 8 %’
Standard model of particle physics 1s a non-Abelian gauge theory with the D o Y (oo ) () D2
°L @ I'® I @ || @ |
symmetry group U(1) x SU(2) x SU(3). |9 | @ |- @ w 58
4 Iﬂ neutrino neutrirEJ neutrino J\ lW L oY

Hamiltonian formulation of LGT

PHYSICAL REVIEW D

Lattice gauge theory (LGT) on Euclidean space-time

15 OCTOBER 1974 NUMBER 2

15 JANUARY 1975

VOLUME 11,

PHYSICAL REVIEW D VOLUME 10, NUMBER 8

Hamiltonian formulation of Wilson’s lattice gauge theories

&
Confinement of quarks John Kogut*

Kenneth G. Wilson Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14850
(Received 12 June 1974)

Leonard Susskind’

Belfer Graduate School of Science, Yeshiva University, New York, New York
and Tel Aviv University, Ramat Aviv, Israel
and Laboratory of Nuclear Studies, Cornell University, Ithaca, New York
(Received 9 July 1974)

A mechanism for total confinement of quarks, similar to that of Schwinger, is defined which requires
the existence of Abelian or non-Abelian gauge fields. It is shown how to quantize a gauge field theory
on a discrete lattice in Euclidean space-time, preserving exact gauge invariance and treating the gauge
fields as angular variables (which makes a gauge-fixing term unnecessary). The lattice gauge theory has
a computable strong-coupling limit; in this limit the binding mechanism applies and there are no free
quarks. There is unfortunately no Lorentz (or Euclidean) invariance in the strong-coupling limit. The
strong-coupling expansion involves sums over all quark paths and sums over all surfaces (on the lattice)
joining quark paths. This structure is reminiscent of relativistic string models of hadrons.

Wilson’s lattice gauge model is presented as a canonical Hamiltonian theory. The structure of the
model is reduced to the interactions of an infinite collection of coupled rigid rotators. The
gauge-invariant configuration space consists of a collection of strings with quarks at their ends. The
strings are lines of non-Abelian electric flux. In the strong-coupling limit the dynamics is best described
in terms of these strings. Quark confinement is a result of the inability to break a string without
producing a pair.

Discretized space, but real continuous time

LGT to approach non-perturbative limits.... e.g., by quantum Monte Carlo



Gauge Theories on Lattice

In present days... from quantum mai

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections

Advancements 1n «
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Published: 28 October 2013

Simulation of non-Abelian gauge theories with
optical lattices
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New experimental results
and propositions are coming very frequently

Long-term goal being the scalable simulation

of non-Abelian theories
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Gauge Theories on Lattice

In present days... form quantum many-body perspective..

Advancements in quantum simulation Recent developments 1n tensor network
(digital + analog) methods

1. Hamiltonian formulation

/A / 4 .
nature First proofp/f concept 2. Access to state or wave-function
3. Entanglement entropy becomes almost free
Letter = Published: 22 June 2016 4. NO Sign pl’Oblem

Real-time dynamics of lattice gauge
theories with a few-qubit quantum
computer

5.Real-time dynamics

In2+1 D

Some advancement using PEPS, but computationally very hard
e.g., Phys. Rev. D 97,034510 (2018)

Esteban A. Martinez , Christine A. Muschik , Philipp Schindler, Daniel Nigg, Alexander
Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller & Rainer
Blatt

Nature 534, 516-519 (23 June 2016) Download Citation

A better way forward... Tree Tensor Network (TTN)

New experimental results 2+t D
and propositions are coming very frequently Phys. Rev. X 10, 041040 (2020)
In 3+1 D...

Long-term goal being the scalable simulation

, , Nat. Comm. 12, 3600 (2021
of non-Abelian theories ( )



Bosonic Schwinger Model
Scalar QED 1n 1+1D

Matter particles are also bosonic
— bosons are easier to cool 1n
cold atomic experiments

Goal:

1.S1gnatures of confinement out-of-equilibrium,
easier to experimentally verify confinement.

(Ala Nat. Phys. 13, 246 (2017))

2.Lack of thermalization and slow dynamics due

to confinement.

PENEICAL REVIEW LET TERS

Highlights Recent Accepted Collections Authors Referees Search Press About

Access by Marie Curie Library - The Abdus Salam

Confinement and Lack of Thermalization after Quenches in the
Bosonic Schwinger Model

Titas Chanda, Jakub Zakrzewski, Maciej Lewenstein, and Luca Tagliacozzo
Phys. Rev. Lett. 124, 180602 — Published 6 May 2020

Equilibrium characterization of confinement
requires calculatlon of “Wﬂson loops

£

e A8
Not,ppss1ble In experiments

Lack of thermalization, memory effect, Luca Taghiacozzo

exotic asymptotic states without disorder



Bosonic Schwinger Model
Scalar QED 1n 1+1D

Lagrangian.... L= —[D,¢|"D¥¢p — m4|o|* — %FMF"“’

D, =, +iq4A,)
Metric convention = (-1,1,1,1) or (-1,1)

And then we discretize...

Prescription for discretization: (Kogut-Susskind-1974)
1. Fix temporal gauge A;(x,t) = 0 in 1+1 dimension
2. Canonical quantization, get the Hamiltonian in continuum
3. Discretize the Hamiltonian on a lattice with spacing a

4. Discretization 1s such that matter fields sit on lattice sites, gauge fields on bonds



Bosonic Schwinger Model

x = l/a%q”

Hamiltonian after discretization... REsers s
2 [¢j9 1] = [¢jaHk] ca l5jk

i 2 i i i
A=Y |12 +2x T + (4x + 9, -2, 0, dy+ h.c)
J

ALy =L, withte[..., -2, -1,0,1,2,...]
jllj>=|lj_1> S

S WEraieaes articles a; >
L) =14+1)
[AJ, ﬁj ] =—(A]] ........... 3 JaAVaVaVaVaVa .

L, Ul = U] /‘
Iy J .-




Bosonic Schwinger Model ——a=lag
6, T1] = [$, 111 = i5; 4

Hamiltonian after discretization...

2 5 ey 73 matirwEn 73 REERER
i 2 i i Dt
A=Y [L]. +2x T + o+ =070, - 26, 0,4, + h.c.)]
I
Electric fields
' 7) //BERSE o ARRT i
Particles a; / L, U, Uj
N\/\N\/J\‘ ...........
Antiparticles 13]-
Corresponding Gauss law generators...
Local U(1) invariance... Gj - Lj 26 Lj_1 = (c’z‘;c’ij i bj’fbj)
¢j sreil e J? &j e &J' T
I1; — e H b o e—% b;
(?j =i Ut (')'] o %1 Qj

. ; | Dynamical charge:
We restrict ourself to G j |y) = 0 sector for Vj Particle —anti-particle number difference



Comment on the ground state...

Dispersion relation without gauge fields (Klein-Gordon theory)...

w(k) = 21/xm?/g* + 2x*(1 — cos ka)

Iim w(k) = \/ k*+m? Gapless in massless scenario
a—0

In the bosonic Schwinger model:

1. Excitations are not free particles, but bound particle-antiparticle pairs \_/
(mesons).



Bosonic Schwinger Model

Comment on the ground state...

a
" 1.50+ )
Dispersion relation without gauge fields (Klein-Gordon theory)... > 1.25-
Py ‘ G
= 100 aese®T L o
= 2 2 2 T A A A A A A "*;;—;"fg,:'“;'ii'-:"‘ —
o(k) = 24/xm?/q” + 2x*(1 — cos ka) 5'3 || sesse: aa
y 0.50- —A—m/q=0.25
lim w(k) = Vk*>+m? Gapless in massless scenario &y 0-001 ¥ ; 0= 03
a—0 (.20 —<—+ i AR
0.00 4

llllllllllllllllllll

Q'\/C\)%VQDCQ‘\OO% =y 0 N, Vv‘fbfo‘\oo%

",

In the bosonic Schwinger model: NNNNNNNNNN
Energy levels

1. Excitations are not free particles, but bound particle-antiparticle pairs
(mesons).

2. A finite mass-gap 1s generated due to matter-gauge coupling.
3.Mass-gap, M/q = (E; — EO)/4\/)_C > mlq.

4.Extra energy, Ez/q = M/q — m/q, arises as binding energy required to
tether particle-antiparticle pairs into mesons.

5. Ground state 1s always gapped with finite correlations.




Bosonic Schwinger Model

Time evolution...

We excite the system out of equilibrium via the non-local operator...

N
SHR
_I.
MR _gbﬂ_R 1_[ U qbﬁ+R+1 o
2 N E
J=5~R =

Creates unit opposite charges separated by a distance of 2R+1 connected
by a string of electric field... i.e., an extended meson

Initial state = :
[Y(t = 0)) = N Mg|Q)

with extra energy = =~ (2R + 1) + 4(x((m/q)* + 2x))1/2

newly
minted

Q) energy

‘ meson




Bosonic Schwinger Model

Time evolution... N =60 sites, N-1 =59 bonds,R =5

Gauge sector Matter sector
(L;) (Qj)
-
S
)
>
D
9 p)
P
o
=
)
o
i =
=
o)
P
—
>
05
—
)
n-' 59 1 60
N s 0.2 45 gmEs . ; : e
8 s R — = — 2 No ballistic spreading of the information/excitation
= 004 7 B IS Light-cone bends (signal of confinement)
S | | Periodic and coherent oscillations

— i — i
4 8 12 16 20 0 4 8 12 16 20
Time ¢ Time ¢

-

No thermalization



Bosonic Schwinger Model

Particle and gauge sector

Time evolution...

Gauge sector

(L;)

' . ' -1
g 12 16 20

Time ¢

N = 60 sites, N-1 = 59 bonds,R = 5

1 60
0.2

' 45 1

0 =

Matter sector

(Qj)

0.04 R DES

0.2 15-

-1 1

1 60
0.2

45
004 836 . - - - . -
+—

0

0.2 15
1

0.04 A DK

0

. ' , - -1
4 8 12 16 20

Time t

1.

String breaking from the boundary

Radiation of lighter mesons, propagates freely
Two domains — confined core and deconfined
outer region

No ballistic spreading of the information/excitation
Light-cone bends (signal of confinement)
Periodic and coherent oscillations

No thermalization



Bosonic Schwinger Model

Time evolution... N =60 sites, N-1 =59 bonds,R =5

Gauge sector Matter sector

1. String inversion in the bulk
—> 2. Confined core disappears after one oscillation

around t = 10

Concentration of bosons 1n the core gets depleted after
few string-oscillations due to heavy meson radiation

1. String breaking from the boundary
Radiation of lighter mesons, propagates freely
Two domains — confined core and deconfined
outer region

Particle and gauge sector

No ballistic spreading of the information/excitation
Light-cone bends (signal of confinement)
Periodic and coherent oscillations

No thermalization

sm et S s s




Bosonic SChWinger Model Entanglement entropy at the
bond between the sites jand j + 1...

Time evolution... N =60 sites, N-1 =59 bonds,R =5
Si(t) = = Trip;(t)Inp;(t)]

7ith Pj (t) = 15401 j42,.N [P ()P (L)

Gauge sector Matter sector

(L;) (Q;)

60

m/q =0

1. Initial spreading of entanglement
slows down.

2. Starts to spread ballistically in
correspondence with the radiation
of lighter mesons.

m/q = 0.25

3.Entanglement stays concentrated
in the confined core, even long
after the accumulation of bosons
disappears.

SRR OO OO LI I 00
CmOtnoge OO mS O oo e o

m/q = 0.5

Particle and gauge sector

o o
~J O
ot O

4. Strong memory effect.

Entanglement entropy at each bond

m/q=1.2




Bosonic Schwinger Model
Time evolution... N =60 sites, N-1 =59 bonds,R =5

Classical: S¢ — SC(|Q) Distillable: S9 — SQ (12)) Due to gIObal U(I) SymmetrY° .o
29
0.75 2.4
060 g5 o
2 ] - - @7, B
030 A2 33 P Po P, P,
0.15 15 0.4 0, 0
'=0.00 1 0.0
075 2.4 with D= Tr [ﬁg] and P ﬁQ/ p,
0.60 =20 2.0
Q 951 1.2
0. 30 M 0.8
0.15 ol 04
1=0.00 1 0.0
59 Sp)=-) pInp + Y pSp)
2.4 sEieals o 0
09 45 1 2.0
0.60 5 o0 16 0 0
0.45 g 95 - 1:2 > ~- 7 " = i
B g-i s¢ (classical) ¢ (distillable)
0.00 1 0.0
oJ 0.40
08 451 0.32
04 BN N[0 The classical part of the entropy remains sharply confined
- nd 0.16 s ;
01 101 0.08 to the confined core, thereby demarcating confined domain
0.0 1 0.00

4 8 12 16 20
Time t



Bosonic Schwinger Model

Time evolution...

Particle and gauge sector

1. Light-cone bends.

2. Coherent oscillation of the string.

3. Partial string breaking.

4. String inversion.

5. Radiation of lighter mesons.

6. Two domains — confined core and deconfined outer
region.

7. Slow depletion of coherent core.




Bosonic Schwinger Model

Lack of thermalization...

Thermalization

(O(W())) = Omicrocann. ast = ... Described by only one parameter (7). .. no
memory

S (t) should grow proportional to the bipartition size for sufficiently long t

Deconfined domain.
Expectation...

Populated by freely propagating lighter mesons.
Should ‘thermalize’.
Should show volume-law of entropy.

H9
., 45-
< 35
DCQD 25 Confined domain.
15- Coherent oscillations.

Memory effect.

Should remain non-thermal.

Entropy should not grow proportional to the bipartition
size, but slower.

1



Bosonic Schwinger Model

1.57 ——. m/q =1
o, TTmig=12 e "," “““ ” Logarithmic growth of entropy
= mfg =2 . N et
1.0- VIR T Ala many-body localization
3 -7 KA "u"ﬂ‘."u"z s
,’__ \ I/ V7 ‘ :
%8 Y/ \‘ : \', i Lack of thermalization...
N = 60, 80, 100 sites, with R = N/10 0 e N e e S
.) ’ : ’ £Egan . 0.5 ‘,:,// \\ \\I I/ \‘ ’I“ l‘”,||:|
Extensive energy in the initial state: A R
required for thermalization 0.0 (b) v ’ )
12 5 10 20 50 100 200
Time ¢ Hioh
Ly 1 N/2+R

59
2 45 -
= %
an

151

1

Perfect area-law of entropy
Lack of thermalization...




Bosonic Schwinger Model

— N =60, N/j =4 ==+ N=80, N/j=4 — N =100, N/j =4

Lack of thermalization... N =60 N/j=5 ==-N=80 Njj=5 —+ N =100 N/j=5

m/q = 0.25
S0,
= 6{(b) —
N = 60, 80, 100 sites, with R = N/10 Eo = % /\53.
Extensive energy in the initial state: .
. - —4 i
required for thermalization 2=
=
X 5014 X
. a=0.93, 8 =1.32 X a=0.94 6=06
¥ 25 , ,ﬂ , 0y 1= | | i |
00 01 02 03 04 05 00 01 02 03 04 05

Renormalized time ¢t /N Renormalized time ¢t /N

o &

N i
S; o (log]—_) (logN)™F witha = 1

For fixed V:

1. Sub-linear in j for small ;.
2. Linear for intermediate j: volume-law.
3. Super-linear before saturating into the confined domain.

2T e A AT I T =~ —_—

Ly / Py , L LS / d P E 3 . r Y 4 i /AT
AL ~ . y AL g/ P il s Yo/ 7. 4 / or A b Vo / N E

[ CONTIN A YANAav/ X , MNAl QRTAT¢

| P : . ’ . o ' ‘,_-‘! P 2 \ 2 f ' 4 ‘[’:, L Y e | 9

e 4 . Ly P do 4 o




Key Points

Bosonic Schwinger odel

1. Bosonic Schwinger model shows strong confining dynamics.

2. Trajectories of the bosons bends inwards.  =reeeeees

3. As a result, asymptotic states are exotic and highly non-thermal.

4. These states are made of —
1. Strongly correlated confined core that obeys area-law of
entropy.
11. Almost thermal outer region (for lower masses) or vacuum
(higher masses).



Abelian-Higgs Model

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press Ab

Access by Marie Curie Library - The Abdus

Phase Diagram of 1 + 1D Abelian-Higgs Model and Its Critical
Point

Titas Chanda, Maciej Lewenstein, Jakub Zakrzewski, and Luca Tagliacozzo
Phys. Rev. Lett. 128, 090601 — Published 28 February 2022

Maciej Lewenstein

Lagrangian.... from... L= —[D,¢|"D*¢ — m4|o|* — %FHVF”V

Now... L

. 1 A
=D I DEG + plldlf — = F FOY — = |@|f

the potential term ... V(¢) = —u?|d|* + % |p|*

In 3+1 dimensions... Spontaneous symmetry-breaking triggers Higgs mechanism... Gauge fields become massive

What about 1+1 dimensions...?



Abelian-Higgs Model

L = —[D,¢]"D*¢ + p?|¢p|* -

What about 1+1 dimensions...? PHYSICAL REVIEW D

covering particles, fields, gravitation, and cosmology

Uv A 4
F,qu _E‘Qb‘

Highlights Recent Accepted Collections Authors Referees Search Press

No Higgs phase in the continuum theory... only confined phase...

Access by Marie Curie Library - The

On lattice ?? Phase diagrams of lattice gauge theories with Higgs fields

Eduardo Fradkin and Stephen H. Shenker
Phys. Rev. D 19, 3682 — Published 15 June 1979

Hamiltonian after discretization...

A 2 . 4 e e e
H = Z[L] —+ ZXH] H] S (4X q2 )Qb] Qb] +?(§b]) ij T 2X(¢]+1U]§b] +[].C’.)]
]



Abelian-Higgs Model

U 2 1 uv A 4
= —[D,¢]"D* ¢ + u*|¢| _Z vl —E\flﬂ
What about 1+1 dimensions...? PHZDSJSZ% I;?E[\l/lEV/VD/Qy
L x . Highlights Recent Accepted Collections Authors Referees Search Press
No Higgs phase in the continuum theory... only confined phase...
Access by Marie Curie Library - The
On lattice ?? Phase diagrams of lattice gauge theories with Higgs fields

Eduardo Fradkin and Stephen H. Shenker
Phys. Rev. D 19, 3682 — Published 15 June 1979

Hamiltonian after discretization...

A 2 . 4 i s S 1eE3E
H = Z[L] -+ ZXH] H] =i (4X qz )Qb] Qb] I ?(Qb]) ij 2X(¢]+1U'¢j = ]]C’)]
j

O 0.20 6 0.20 E
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,—% 0157 & % il §
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g‘) s E Crossover ; E % L
_ - ) - —
8 | oo0sjg SO 0.05] G 5D
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Abelian-Higgs Model

Only on lattice with finite lattice spacing a

o 0.20——
:% [Otunn]
os 0154
8 o
0.10-
%0 > § Crossover
g 0.05- qé: SOQPT
= o FOQPT
ﬁ 0.00 E
—=1.0 =05 0.0
w’/q

0.20

0.157

0.107

0.091

0.00:

For smaller and smaller a, the Higgs phase shifts towards the right

For a — 0, the Higgs phase disappears

= Confined

Entanglement entropy

—




Abelian-Higgs Model

—
% SR (5

S EEENENEEr S REE S EPRER N

O 0.20
g Otunn
os 015
g

0.10+
éﬂ > 8 Crossover
S 005 & SOQPT
= S FOQPT
= O

0.00- ' '

=100 =00 0.0 =05
fiejos

Why Higgs phase??

1. In the confined phase, var(L) = 0. In the

Higgs phase, var(L) is large.

2. Tunneling amplitude O ;5 is = 0 in the
confined phase, while in the Higgs phase

O t1ynn 1s large as confinement disappears.

3. Entanglement entropy 1s also large in the Higgs
phase.

0.20 2
SL/Q g
0.15- =
0) :
0.10- % i
. 8 Crossover %
= | =
0.05{ & SUNES oD
0,00 ia
=10 =05 0.0
w/q
1. For smaller A/g*, two phases are separated by first
order quantum phase transition (FOQPT)
2. FOQPT line ends at a critical second order quantum
phase transition (SOQPT) point
3. Beyond SOQPT point, two phases are smoothly

connected by a crossover



Abelian-Higgs Model

Newly discovered critical point is a special one...

We characterize it using the machineries of conformal field theory (CFT)
Scale 1nvariant critical systems in 1+1D are described by CFT...

Journal of Statistical Mechanics: Theory and Experiment

Scaling of entanglement entropy: S ([, L) = %W(l, L)+ Db’

[ —Bipartition size

L —System size Entanglement entropy and quantum field theory

Pasquale Calabrese' and John Cardy'?

W(l, L) = lOg [% Sin(ﬂl/L)], the COI’d length Published 11 June 2004 - IOP Publishing Ltd

Journal of Statistical Mechanics: Theory and Experiment, Volume 2004, June 2004

C _)The Central Charge Of the CFT Citation Pasquale Calabrese and John Cardy J. Stat. Mech. (2004) P06002
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Al /g =0447| | —— L =60 n?/q* = 0.447, 1/ ¢ = 0.0565 p
3.01 4 ) —— L=280 | &1 9
( —— L =100
] —— L =120
2.5 \ 1.0- :
P 1 z 1.5 | i 4 4ol ) ) °
é)l:2'0 iﬁt 2~y 0.0565 UDO 3. ¥ —— slope = 1.49/6 2= 3/201.11:1(:al p()lnt
1 5_ /q il g */ G il L =40
. e A L=60
] 4 —« L=28&0
1.0- (a) ok \ 0.6 /’* - L =100
a S Ak b e L=120
0.5 . 04 P

0.055 0.056 0.057 0.058 0.059 0.060 d EE YR A1 || 1By R SRS 1 | B S0 NEY) I E R L
M q? W



Abelian-Higgs Model

Newly discovered critical point is a special one...

3.9

2.57

——
£2.0
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imiE

(a)

” ‘"‘Ij\
\‘s

A /g =044T —— L =460

¢ = 3/2 critical point 3.01

—— L =80
—— L =100
—— L =120

Cht R 149 v
)\/q2 ~ (0.0565

0.5

Smoking gun for Higgs mechanism  0.055 0.0

Our picture...

T

56 0.057 0.058 0.059 0.060
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125
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u?/q* = 0.447, A/ ¢*> = 0.0565

//*(
“(b)

- slope = 1.49/6
L =40
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1%

1. ¢ = 1/2 + 1. The Ising criticality gives ¢; = 1/2. ¢, = 1 comes from free bosons.

2. Due to Higgs mechanism, the complex Higgs field separates into amplitude and phase.

3. The amplitude part — real ¢p* theory — Ising transition in 1+1D (cr = 1/2 part).

4. The phase is absorbed by the gauge bosons — massless at the critical point (¢}, = 1 part).



Abelian-Higgs Model

How to verify this and detect

these gapless modes?

Titas Chanda

What 1s the Luttinger parameter K for the bosonic part?

Maciej Lewenstein

Local Fluctuations: F (I, L) = ((Z]<l Q]) =0 0 (L ik (Lz)z

Scaling of Local Fluctuations: F([,L) =

| —Bipartition size
L —>System size

W(l L) =log [— sin (7l /L)], the cord length

—W(l,L)+d’

K —Luttinger parameter for the free bosonic theory

Song, Rachel, Hur, Phys. Rev. B 82, 012405 (2010)

Rachel, Laflorencie, Song, Hur, Phys. Rev. Lett. 108, 116401 (2012)
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Luca Tagliacozzo
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Marcello Dalmonte

L =40

L =60

L =80

L =100

slope = 2.07(2) /272




Abelian-Higgs Model

How to verify this and detect

these gapless modes?

Maciej Lewenstein

Luca Taglhiacozzo Marcello Dalmonte
Spectral analysis... equilibrium
Degeneracy
| VIV » . TV
6 AN AN A p 4 DS ¥ 3 En(L) — EO (L) _I_ xn Ls, Conformal tOwerS
SEIXRXX XXX x| 2
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2 1 1074
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D 1XXX—X—X X x1 1 0.0 ..
-
| | | | 8o —(.51 .~
(]5.01 0.02 0.03 0.04 0.05 | e
1/L 2—1.0- .
&5 e
Vel =
Ising Spectrum with fixed boundary condition T 0] cu, = 6.02(8) T
bosonic part hidden in different gauge sectors - -
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Abelian-Higgs Model

How to verify this and detect

these gapless modes?

Maciej Lewenstein Luca Tagliacozzo Marcello Dalmonte

Neutral and charge gaps
AEy = E1(Q =0) — Eo(Q = 0),
AEc = Eo(Q =1)+ Eo(Q = —1) — 2Eo(Q = 0).
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e e £0.0004
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1/L 1/L 0.0002 4.
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Folk,w) = ﬁﬁtZe R=5) N et ((0) (ta) — (O))g) Out f’f equlhb.rlum dynamlcs to find the dispersion
j=1 n=0 relations of this non-inteerable model...
g

Only one gapless signal... the other one is gapped



Key Points

Bosonic Schwinger odel

1. Bosonic Schwinger model shows strong confining dynamics.

2. Trajectories of the bosons bends inwards.

3. As a result, asymptotic states are exotic and highly non-thermal.

4. These states are made of —
1. Strongly correlated confined core that obeys area-law of

entropy.

11. Almost thermal outer region (for lower masses) or vacuum
i ases) Eigiese: Abelian-Higgs Model

1. Higgs phase can be observed 1n 1+1D after lattice discretization.
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2. Higgs phase 1s separated from the confined phase by a line of
first order transition, a second order critical point, and then a

smooth crossover.

3. The newly discovered critical point is very special with ¢ = 3/2.

4. The origin of ¢ = 3/2 can be explained by the Higgs




