Modular Spread/Krylov Complexity

Paweł Caputa

Outline:

- Motivation
- Krylov basis and quantum complexity measures for operators and states
- Application: Modular Hamiltonian Dynamics
- Conclusions/Open Questions

Based on:
"Quantum chaos and the complexity of spread of states" with V. Balasubramanian, J.M. Magan, Q. Wu, Phys. Rev. D. 106 (2022) 4, 046007
"Geometry of Krylov Complexity" with J.M. Magan, D. Patramanis Phys. Rev. Res. 4, 013041
Upcoming paper with J.M. Magan (Bariloche) and D. Patramanis (UW)

General Problem

Unitary evolution of states or operators (QM or QFT):

$$
\begin{array}{ll}
i \partial_{t}|\Psi(t)\rangle=H|\Psi(t)\rangle & \partial_{t} \mathcal{O}(t)=i[H, \mathcal{O}(t)] \\
|\Psi(t)\rangle=e^{-i H t}|\Psi(0)\rangle & \mathcal{O}(t)=e^{i H t} \mathcal{O}(0) e^{-i H t}
\end{array}
$$

Generically, a "simple" reference quantum state $|\Psi(0)\rangle$ "spreads" and becomes "complex" (in Hilbert space)

Generically, a "simple" operator $\mathcal{O}(0)$ "grows" and becomes "complex" (in operator space)

How to quantify this Quantum Complexity?

Motivation/Intuition:

$$
\mathcal{O}(t)=e^{i H t} \mathcal{O}(0) e^{-i H t}=\mathcal{O}(0)+i t[H, \mathcal{O}(0)]+\frac{(i t)^{2}}{2}[H,[H, \mathcal{O}(0)]]+\ldots
$$

E.g.

$$
H=\sum_{i}\left(Z_{i} \cdot Z_{i+1}+B_{x} X_{i}+B_{z} Z_{i}\right) \quad \mathcal{O}(0)=X_{1}
$$

$$
2
$$

$+t^{3}(\ldots \ldots$.

Common lore: the more "chaotic" H , the faster the operator grows.
How to quantify this: A universal definition of the operator size/complexity?
Physics: Definition of Quantum Chaos? ETH, thermalisation...?

Time-evolved Thermofield-Double state

$$
\left|\Psi_{\beta}(t)\right\rangle=e^{-i\left(H_{L}+H_{R}\right) t} \frac{1}{\sqrt{Z(\beta)}} \sum_{n} e^{-\frac{\beta}{2} E_{n}}|n, n\rangle
$$

BH (ERB) continues to grow with t but entanglement entropy saturates ("not enough")
What is the "CFT dual" of this (ERB) growth? "Complexity" of the TFD state? [Susskind,'14]
Universal (useful) notion of complexity? Unexplored in QFT (CFT)...
[PC,Kundu,Miyaji,Takayanagi,Watanabe'17][Jefferson,Myers; Chapman,Heller,Marrochio,Pastawski'17]
[PC,Magan'18] [Flory,Heller'20] [Erdmenger,Flory,Gerbershagen,Heller,Weigel'22]...

This talk: describe a notion(s) of quantum complexity based on the Krylov basis
that can be universally defined (and computed) in systems from QM to QFTs
and show some recent results, including Modular Hamiltonian evolution

Basic Idea

Given

$$
|\Psi(t)\rangle=e^{-i H t}|\Psi(0)\rangle \quad \mathcal{O}(t)=e^{i H t} \mathcal{O}(0) e^{-i H t} \equiv e^{i \mathcal{L} t} \mathcal{O}(0)
$$

More generally we can think about quantum circuits (circuit H and circuit t)
We can expand them in a certain basis (Krylov basis):

$$
\left.\left.\left.|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle=\sum_{n} \phi_{n}(t)\left|K_{n}\right\rangle \quad \mid \mathcal{O}(t)\right)=e^{i \mathcal{L} t} \mid \mathcal{O}_{0}\right)=\sum_{n} \phi_{n}(t) \mid \mathcal{O}_{n}\right)
$$

Unitarity: Probability distribution

$$
p_{n}(t)=\left|\phi_{n}(t)\right|^{2} \quad \sum_{n}\left|\phi_{n}(t)\right|^{2}=1
$$

We will use this probability to characterise the evolution/growth and "complexity".

Aleksey Nikolaevich Krylov (1863-1945)

Russian naval engineer and applied mathematician.
His mother Sofya Lyapunova came from the famous "Lyapunov" family and Alekandr Lyapunov was his cousin.

He became famous for pioneering "Theory of oscillating motions of the ship".

In 1904 he built the first machine in Russia for integrating ODEs.

In 1931 he wrote a paper on Krylov subspace: A nxn matrix and b n-vec.

$$
\mathcal{K}_{r}(A, b)=\operatorname{span}\left\{b, A b, A^{2} b, \ldots, A^{r-1} b\right\}
$$

He was interested in efficient diagonalization of matrices and computation of characteristic polynomial coefficients.
"... he was concerned with efficient computations and counted computational work/complexity as the number of separate numerical multiplications "

Unitary evolution/Q-circuit

$$
|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle=\sum_{n=0}^{\infty} \frac{(-i t)^{n}}{n!}\left|\Psi_{n}\right\rangle
$$

Goal: Given states

$$
\left|\Psi_{n}\right\rangle \equiv\left\{\left|\Psi_{0}\right\rangle, H\left|\Psi_{0}\right\rangle, \ldots, H^{n}\left|\Psi_{0}\right\rangle, \ldots\right\}
$$

construct an orthonormal basis $\left|K_{n}\right\rangle$ recursively (Lanczos algorithm, G-S):

$$
\left|A_{n+1}\right\rangle=\left(H-a_{n}\right)\left|K_{n}\right\rangle-b_{n}\left|K_{n-1}\right\rangle, \quad\left|K_{n}\right\rangle=b_{n}^{-1}\left|A_{n}\right\rangle
$$

with "Lanczos coefficients":

$$
a_{n}=\left\langle K_{n}\right| H\left|K_{n}\right\rangle, \quad b_{n}=\left\langle A_{n} \mid A_{n}\right\rangle^{1 / 2}
$$

Such that $b_{0}=0$ and $\left|K_{0}\right\rangle=\left|\Psi_{0}\right\rangle$

Krylov Basis

In the Krylov basis, the Hamiltonian becomes tri-diagonal

$$
H\left|K_{n}\right\rangle=a_{n}\left|K_{n}\right\rangle+b_{n+1}\left|K_{n+1}\right\rangle+b_{n}\left|K_{n-1}\right\rangle \quad\left\langle K_{m}\right| H\left|K_{n}\right\rangle=\left(\begin{array}{ccccc}
a_{0} & b_{1} & 0 & 0 & \cdots \\
b_{1} & a_{1} & b_{2} & 0 & \cdots \\
0 & b_{2} & a_{2} & b_{3} & \cdots \\
0 & 0 & b_{3} & a_{3} & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right)
$$

Expanding our state in the Krylov basis
"Hessenberg form"

$$
|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle=\sum_{n} \phi_{n}(t)\left|K_{n}\right\rangle \quad \sum_{n}\left|\phi_{n}(t)\right|^{2} \equiv \sum_{n} p_{n}=1
$$

By construction, we have a Schrödinger equation for the coefficients (amplitudes)

$$
\begin{aligned}
& i \partial_{t}|\Psi(t)\rangle=\sum_{n} i \partial_{t} \phi_{n}(t)\left|K_{n}\right\rangle \\
& i \partial_{t}|\Psi(t)\rangle=H|\Psi(t)\rangle=\sum_{n} \phi_{n}(t) H\left|K_{n}\right\rangle=\sum_{n}\left[a_{n} \phi_{n}(t)+b_{n} \phi_{n-1}(t)+b_{n+1} \phi_{n+1}(t)\right]\left|K_{n}\right\rangle
\end{aligned}
$$

$$
i \partial_{t} \phi_{n}(t)=a_{n} \phi_{n}(t)+b_{n} \phi_{n-1}(t)+b_{n+1} \phi_{n+1}(t) \quad \phi_{n}(0)=\delta_{n, 0}
$$

Lanczos coeff. are encoded in the "return amplitude" (auto-correlator, Loschmidt amp.)

$$
S(t) \equiv\langle\Psi(t) \mid \Psi(0)\rangle=\left\langle\Psi_{0}\right| e^{i H t}\left|\Psi_{0}\right\rangle=\phi_{0}^{*}(t)
$$

Moments

$$
\mu_{n}=\left.\frac{d^{n}}{d t^{n}} S(t)\right|_{t=0}=\left.\langle\psi(0)| \frac{d^{n}}{d t^{n}} e^{i H t}|\psi(0)\rangle\right|_{t=0}=\left\langle K_{0}\right|(i H)^{n}\left|K_{0}\right\rangle
$$

Knowing moments allows to find Lanczos coefficients (algorithm)
e.g. $\quad\left\langle K_{0}\right|(i H)\left|K_{0}\right\rangle=i a_{0} \quad\left\langle K_{0}\right|(i H)^{2}\left|K_{0}\right\rangle=-a_{0}^{2}-b_{1}^{2}$

Inverse relations:

$$
\begin{gathered}
a_{0}=-i \mu_{1}, \\
b_{1}^{2}=\mu_{1}^{2}-\mu_{2} \\
a_{1}=i \frac{\mu_{1}^{3}-2 \mu_{1} \mu_{2}+\mu_{3}}{\mu_{1}^{2}-\mu_{2}}
\end{gathered} \quad b_{2}^{2}=\frac{\mu_{2}^{3}+\mu_{3}^{2}+\mu_{1}^{2} \mu_{4}-2 \mu_{1} \mu_{2} \mu_{3}-\mu_{2} \mu_{4}}{\left(\mu_{1}^{2}-\mu_{2}\right)^{2}}
$$

Heisenberg evolution

$$
\partial_{t} \mathcal{O}(t)=i[H, \mathcal{O}(t)] \quad \mathcal{O}(t)=e^{i H t} \mathcal{O}(0) e^{-i H t}
$$

Formally, we can write the operator as

$$
\mathcal{O}(t)=\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} \tilde{\mathcal{O}}_{n} \quad \tilde{\mathcal{O}}_{0}=\mathcal{O}, \quad \tilde{\mathcal{O}}_{1}=[H, \mathcal{O}], \quad \tilde{\mathcal{O}}_{2}=[H,[H, \mathcal{O}]], \ldots
$$

Liouvillian (super)operator

$$
\mathcal{L}=[H, \cdot], \quad \mathcal{O}(t) \equiv e^{i \mathcal{L} t} \mathcal{O}, \quad \tilde{\mathcal{O}}_{n} \equiv \mathcal{L}^{n} \mathcal{O} .
$$

Given $\left\{\mathcal{O}, \mathcal{L O}, \mathcal{L}^{2} \mathcal{O}, \ldots\right\}$ we need a basis (GNS) $\left.\left.\left.\quad \mid \mathcal{O}\right) \quad \mathcal{L} \mid \mathcal{O}\right)=\mid[H, \mathcal{O}]\right)$
We should pick an inner product:

$$
\begin{array}{cc}
(A \mid B)_{\beta}^{g}=\int_{0}^{\beta} g(\lambda)\left\langle e^{\lambda H} A^{\dagger} e^{-\lambda H} B\right\rangle_{\beta} d \lambda . & \langle A\rangle_{\beta}=\frac{1}{Z} \operatorname{Tr}\left(e^{-\beta H} A\right), \quad Z=\operatorname{Tr}\left(e^{-\beta H}\right) \\
g(\lambda) \geq 0, \quad g(\beta-\lambda)=g(\lambda), & \frac{1}{\beta} \int_{0}^{\beta} d \lambda g(\lambda)=1
\end{array}
$$

The most common: Wightman

$$
(A \mid B)=\left\langle e^{H \beta / 2} A^{\dagger} e^{-H \beta / 2} B\right\rangle_{\beta} \quad g(\lambda)=\delta(\lambda-\beta / 2)
$$

Then we follow the Lanczos algorithm.

Most of the inner products will involve $\operatorname{Tr}()$ so we don't need $a_{n}=0$

$$
\left.\left.\mid \mathcal{O}(t))=e^{i \mathcal{L} t} \mid \mathcal{O}\right) \equiv \sum_{n} i^{n} \varphi_{n}(t) \mid \mathcal{O}_{n}\right)
$$

Schrödinger equation:

$$
\partial_{t} \varphi_{n}(t)=b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t) \quad \varphi_{n}(0)=\delta_{n, 0}
$$

Lanczos coefficients are encoded in the return amplitude

$$
\left.S(t)=\left(\mathcal{O}_{0} \mid \mathcal{O}(t)\right)=\left(\mathcal{O}_{0}\left|e^{i \mathcal{L} t}\right| \mathcal{O}_{0}\right)=\varphi_{0}(t)=\frac{1}{Z} \sum_{n, m}|\langle n| \mathcal{O}| m\right\rangle\left.\right|^{2} e^{-\left(\frac{\beta}{2}-i t\right) E_{n}} e^{-\left(\frac{\beta}{2}+i t\right) E_{m}}
$$

Krylov Basis Summary

States

$$
\begin{gathered}
|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle=\sum_{n} \phi_{n}(t)\left|K_{n}\right\rangle \\
\sum_{n}\left|\phi_{n}(t)\right|^{2} \equiv \sum_{n} p_{n}=1
\end{gathered}
$$

$$
i \partial_{t} \phi_{n}(t)=a_{n} \phi_{n}(t)+b_{n} \phi_{n-1}(t)+b_{n+1} \phi_{n+1}(t)
$$

$$
S(t) \equiv\langle\Psi(t) \mid \Psi(0)\rangle=\left\langle\Psi_{0}\right| e^{i H t}\left|\Psi_{0}\right\rangle=\phi_{0}^{*}(t)
$$

Operators

$$
\begin{gathered}
\left.\left.\mid \mathcal{O}(t))=e^{i \mathcal{L} t} \mid \mathcal{O}\right) \equiv \sum_{n} i^{n} \varphi_{n}(t) \mid \mathcal{O}_{n}\right) \\
\sum_{n}\left|\varphi_{n}(t)\right|^{2} \equiv \sum_{n} p_{n}=1 \\
\partial_{t} \varphi_{n}(t)=b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t) \\
S(t)=(\mathcal{O}(0) \mid \mathcal{O}(t))=\left(\mathcal{O}_{0}\left|e^{i \mathcal{L} t}\right| \mathcal{O}_{0}\right)=\varphi_{0}(t)
\end{gathered}
$$

Connections:

$$
|\Psi(t)\rangle=\mathcal{O}(-t)|\Psi(0)\rangle
$$

E.g. Wightman $\quad|\psi(t)\rangle=\rho_{\beta}^{1 / 4} \mathcal{O}_{L}(t) \rho_{\beta}^{-1 / 4}\left|\psi_{\beta}\right\rangle$

The physics of the growth/evolution <=> motion of a particle on a chain

The further in the chain the particle is, the more "complex" state in the Krylov basis needs to be employed (to represent the state or the operator)

A natural definition of "complexity" as an average position on the chain:

$$
\mathcal{C}_{\Psi}(t)=\sum_{n} n\left|\phi_{n}(t)\right|^{2}=\langle\Psi(t)| \hat{K}|\Psi(t)\rangle \quad \hat{K}=\sum_{n} n\left|K_{n}\right\rangle\left\langle K_{n}\right|
$$

Important: Evolution can be characterised with QI/Probability tools:
K-entropy $S_{K}=-\sum_{n} p_{n} \log p_{n} \quad$ K-variance, K-capacity, $\quad C_{K}=e^{S_{K}} \ldots$
[Barbon, Rabinovici, Shir, Sinha '19] [PC, Datta '21] [Patramanis '21].

Starting from the state: $\quad|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle$

Complexity = "Spread in Hilbert space"

Take a basis:

$$
\begin{aligned}
& \mathcal{B}=\left\{\left|B_{n}\right\rangle: n=0,1,2, \cdots\right\} \quad \text { and a "cost function" (a family, } c_{n}=n \text {) } \\
& C_{\mathcal{B}}(t)=\sum_{n} c_{n}\left|\left\langle\psi(t) \mid B_{n}\right\rangle\right|^{2} \equiv \sum_{n} c_{n} p_{\mathcal{B}}(n, t) \\
& C(t)=\min _{\mathcal{B}} C_{\mathcal{B}}(t) \quad \begin{array}{c}
\text { minimum (finite } t \text { t for the } \\
\text { Krylov basis! }
\end{array}
\end{aligned}
$$

Intuition (Induction): For discrete time evolution, assume N-1 vectors equal to the Krylov basis. Then in the next step:

$$
\left|\psi_{N}\right\rangle=p_{\perp}\left|K_{N}\right\rangle+p_{\|}\left|\chi_{\|}\right\rangle
$$

Extensive studies of the operator growth

Numerics (Operator growth in XXZ chain + Integrability breaking terms, RMT)

Continuum limit: $\quad x=\epsilon n, \quad \varphi(x, t)=\varphi_{n}(t), \quad v(x)=2 \epsilon b_{n}=2 \epsilon b(\epsilon n)$

$$
\partial_{t} \varphi(x, t)+v(x) \partial_{x} \varphi(x, t)+\frac{1}{2} v^{\prime}(x) \varphi(x, t)=0 \quad \text { (cont. eq for } p=|\varphi|^{2} \text {) }
$$

Consider the TFD state

$$
\left|\Psi_{\beta}\right\rangle=\frac{1}{\sqrt{Z(\beta)}} \sum_{n} e^{-\frac{\beta}{2} E_{n}}|n, n\rangle \quad Z(\beta)=\sum_{n} e^{-\beta E_{n}}
$$

and its time evolution
[Hartman,Maldacena '13]

$$
\left|\psi_{\beta}(t)\right\rangle=e^{-i H t}\left|\psi_{\beta}\right\rangle \quad H=H_{L}+H_{R} \quad H=H_{L / R}
$$

Goal: expand this state in the Krylov basis and compute complexity.
Lanczos coefficients from the moments of

$$
\begin{equation*}
S(t)=\left\langle\Psi_{\beta}(t) \mid \Psi_{\beta}\right\rangle=\frac{Z(\beta-i t)}{Z(\beta)} \tag{~SFF}
\end{equation*}
$$

Non-universal, can be extracted once we know Z (spectrum!).

Evolution of the TFD for RMT

Late Times: "Black Holes and RM"

Consider a random Hamiltonian ($\mathrm{N} \times \mathrm{N}$, Hermitian matrix, GUE,...)

$$
H=\left(\begin{array}{ccc}
-0.625778+0 . i & 0.0534572-0.238692 i & -0.106837+0.170713 i \\
0.0534572+0.238692 i & 0.518485+0 . i & 0.995288-0.0813202 i \\
-0.106837-0.170713 i & 0.995288+0.0813202 i & -0.589891+0 . i
\end{array}\right)
$$

We can easily diagonalise it, compute SFF, moments, Lanczos, etc.
We want to put it into the tri-diagonal form and exponentiate

$$
\left(\begin{array}{ccccc}
a_{0} & b_{1} & 0 & 0 & \cdots \\
b_{1} & a_{1} & b_{2} & 0 & \cdots \\
0 & b_{2} & a_{2} & b_{3} & \cdots \\
0 & 0 & b_{3} & a_{3} & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right)
$$

There exist very efficient algorithms/libraries (Python or Mathematica) to put a matrix into this form (Hessenberg). So we can also read off Lanczos coeff. this way.

We also need to "rotate" a TFD into vec: $\{1,0,0, \ldots$.
Then applying $\exp (-\mathrm{iHt})$ to the initial state gives all the $\phi_{n}(t)$

Evolution of the TFD for RMT

Complexity for TFD evolved with GUE Hamiltonian (Similar for GOE,GSE,SYK)

Early time

Ramp, Peak, Slope, Plateau

$N=\{1024,1280,1536,1792,2048,2560,3072,3584,4096\}$

Slope, Dip, Ramp, Plateau

$N=4096$ and $\beta=1$, averaged over 10 samples of the GUE

Motivation: "Modular Hamiltonian"

Setup: $\quad \mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} \quad \rho=|\psi\rangle\langle\psi|$
Reduced density matrix: $\quad \rho_{A}=\operatorname{Tr}_{B}(\rho) \quad \rho_{A} \equiv e^{-H_{A}} \quad$ Modular Hamiltonian
"Entanglement spectrum"

$$
|\psi\rangle=\sum_{n} \sqrt{\lambda_{n}}\left|n_{A}\right\rangle\left|n_{B}\right\rangle \quad \lambda_{n} \equiv e^{E_{n}} \quad Z(\beta=n)=\operatorname{Tr}\left(\rho_{A}^{n}\right)=\sum_{n} e^{-n E_{n}}
$$

Much more information than EE. (e.g. topological order...)
[Li,Haldane'08]
Modular flow of operators: $\mathcal{O} \in A$

$$
\mathcal{O}_{s} \equiv e^{i s H_{A}} \mathcal{O} e^{-i s H_{A}}
$$

$\Delta^{i s} \quad$ Tomita-Takesaki theory
Operator growth and complexity?

Important AdS/CFT: Bulk reconstruction and bulk locality

$$
\Phi\left(X_{r}\right)=\int_{R} d x_{R} \int d s f_{\Delta, s}^{R}\left(X_{r} \mid x_{R}\right) \mathcal{O}_{s}(x), \quad \mathcal{O}_{s}\left(x_{R}\right)=\rho_{R}^{-i s / 2 \pi} \mathcal{O}\left(x_{R}\right) \rho_{R}^{i s / 2 \pi}
$$

1. States: Modular Spread Complexity

$$
|\sqrt{\rho}\rangle=\sum_{a} \sqrt{\lambda_{a}}|a\rangle_{A}|a\rangle_{B} \quad \quad|\sqrt{\rho}(s)\rangle=e^{-i s H_{A} \otimes 1_{B}}\left|\rho^{1 / 2}\right\rangle
$$

Return amplitude:

$$
S(s)=\operatorname{Tr}\left(\rho_{A}^{1-i s}\right)=Z(1-i s)
$$

or in terms of Renyi entropies

$$
S(s)=\exp \left(i s S_{A}^{(1-i s)}\right) \quad S_{A}^{(n)}=\frac{1}{1-n} \log \left(\operatorname{Tr} \rho_{A}^{n}\right)
$$

Moments and Lanczos coefficients become interesting QI probes:

$$
\text { EE: } \quad a_{0}=\left\langle H_{A}\right\rangle=S_{A} \quad \text { Capacity of E: } \quad b_{1}^{2}=\left\langle H_{A}^{2}\right\rangle-\left\langle H_{A}\right\rangle^{2}
$$

Toy example: Qubit

$$
|\psi\rangle=\sqrt{p}|00\rangle+\sqrt{1-p}|11\rangle
$$

Modular Hamiltonian: $\quad \rho_{1}=e^{-H_{1}} \quad H_{1}=\left(\begin{array}{cc}-\log (p) & 0 \\ 0 & -\log (1-p)\end{array}\right)$

Modular Z:

$$
\operatorname{Tr}\left(\rho_{1}^{n}\right)=p^{n}+(1-p)^{n}
$$

Return amplitude:

$$
S(s)=p^{1-i s}+(1-p)^{1-i s}=\sum_{k=0}^{\infty} \mu_{k} \frac{s^{k}}{k!} \quad \mu_{k}=(-i)^{k}\left(p \log ^{k}(p)+(1-p) \log ^{k}(1-p)\right)
$$

Compute Lanczos coeff. and put it in the Krylov basis (tri-diag):

$$
\left\langle K_{n}\right| H\left|K_{m}\right\rangle=\left(\begin{array}{cc}
-p \log (p)-(1-p) \log (1-p) & \pm \sqrt{p(1-p)}(\log (1-p)-\log (p)), \\
\pm \sqrt{p(1-p)}(\log (1-p)-\log (p)), & -p \log (1-p)-(1-p) \log (p)
\end{array}\right)
$$

Modular spread complexity:

$$
\mathcal{C}(s)=4 p(1-p) \sin ^{2}\left(\frac{s}{2} \log \frac{1-p}{p}\right)
$$

Modular flow of operators

Total Modular Hamiltonian is well defined in the continuum:

$$
\mathcal{O}(s)=e^{i s H} \mathcal{O} e^{-i s H} \quad H=H_{A} \otimes 1_{B}-1_{A} \otimes H_{B}
$$

In 2d CFTs for a single interval $A=[a, b]$ in the vacuum we have (SL(2,R))

$$
H=s_{-1} L_{-1}+s_{0} L_{0}+s_{1} L_{1}+\mathrm{bar}
$$

Return amplitudes

$$
S(s)=\langle\mathcal{O}(s) \mathcal{O}\rangle
$$

We can extract modular Krylov complexity

$$
C(s)=2 h f(a, b) \sinh ^{2}(\pi s) \quad \text { Universal exponent of the modular growth }
$$

Future: Modular chaos from the operator growth?

Conclusions

- New: Krylov/Spread Complexity for operators/states in many-body systems !
- Computable: analytically and numerically for discrete models and QFTs
- New tool for interesting many-body setups (topological phases)
- Crucial ingredient: Return amplitude (2- and higher-point function, SFF etc.)
- Evolution of TFD in RM: Ramp, Peak, Slope, Plateau
- New direction: Spread/Krylov of the modular evolution
- New understanding of entanglement spectra and modular evolution?
- Complexity of local operators in the bulk?

Many Open Problems

- Universal laws for Spread/Krylov complexity? Is it useful for QI or QC?
- Integrable vs Chaotic growth? Is it sensitive? At which time regime?
- Purely Integrable models? Can we study it using integrability (not just numerics)?
- Interesting states? More complicated objects (defects, boundaries)?
- Generalisations: Time dep $H(t)$, Open systems etc.
- Precise connection with Holography? Length in JT [Lin'22, Rabinovici et al. '23]? QGr?
- Late-time physics of AdS/CFT and extremal Black-Holes? [Boruch et al.]

$$
\left|\Psi_{\beta}\right\rangle=\frac{1}{\sqrt{Z(\beta)}} \sum_{n} e^{-\frac{\beta}{2} E_{n}}|n, n\rangle \quad H_{L}=H_{R}=\omega\left(\hat{n}+\frac{1}{2}\right), \quad E_{n}=\omega\left(n+\frac{1}{2}\right)
$$

We can write this state as

$$
\left|\Psi_{\beta}\right\rangle=e^{i r \tilde{H}}|0,0\rangle \quad \tilde{H}=\alpha\left(a_{1}^{\dagger} a_{1}^{\dagger}+a_{1} a_{2}\right) \quad e^{-\beta \omega}=\tanh ^{2}(\alpha r)
$$

Action in the eigenstates $\left|K_{n}\right\rangle \equiv|n, n\rangle$

$$
\tilde{H}\left|K_{n}\right\rangle=\alpha(n+1)\left|K_{n+1}\right\rangle+\alpha n\left|K_{n-1}\right\rangle
$$

Expansion

$$
\left|\Psi_{\beta}\right\rangle=\sum_{n} i^{n} \varphi_{n}(r)\left|K_{n}\right\rangle \quad \varphi_{n}(r)=\frac{\tanh ^{n}(\alpha r)}{\cosh (\alpha r)}=\frac{1}{\sqrt{Z(\beta)}} e^{-\frac{\beta}{2} E_{n}}
$$

Krylov complexity (of formation)

$$
\mathcal{C}=\sum_{n} n\left|\varphi_{n}(r)\right|^{2}=\sinh ^{2}(\alpha r)=\frac{1}{Z} \sum_{n} n e^{-\beta E_{n}}=\frac{1}{e^{\beta \omega}-1} \sim \Delta E
$$

General (e.g. T-matrix and chords in DSSYK, AdS2 length)

Probe of topological phases?

SSH model (polyacetylene)

$$
H=t_{1} \sum_{i}\left(c_{A i}^{\dagger} c_{B i}+\text { h.c. }\right)-t_{2} \sum_{i}\left(c_{B i}^{\dagger} c_{A, i+1}+\text { h.c. }\right)
$$

Depending on t's the ground state of the model $\operatorname{SU}(2) \mathrm{CS}$:

$$
\begin{gathered}
|\Omega\rangle=\prod_{k>0} \mathcal{N}_{k} e^{-i \tan \left(\frac{\phi_{k}}{2}\right)\left(J_{+}^{(k)}+J_{+}^{(-k)}\right)}\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{k} \\
\sin \phi_{k}=\frac{\left|R_{1}\right|}{R}, \quad \cos \phi_{k}=\frac{R_{3}}{R} \\
R_{1}=t_{1}-t_{2} \cos (k) \quad R_{3}=t_{2} \sin (k) \quad R=\sqrt{t_{1}^{2}+t_{2}^{2}-2 t_{1} t_{2} \cos (k)}
\end{gathered}
$$

represents non-topological phase (t1>t2) or topological insulator ($\mathrm{t} 1<\mathrm{t} 2$).

We can use Krylov methods to compute spread
 complexity of formation for a single momentum and then sum over.

$$
\mathcal{C}\left(t_{1}, t_{2}\right)=2 \int_{0}^{\pi} \frac{d k}{2 \pi} \mathcal{C}_{k}=\frac{1}{2}-\frac{t_{1}+t_{2}-\left|t_{1}-t_{2}\right|}{2 \pi t_{1}} .
$$

