Modular Spread/Krylov Complexity
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Outline:

 Motivation

 Krylov basis and quantum complexity measures for operators and states

« Application: Modular Hamiltonian Dynamics

e (Conclusions/Open Questions

Based on:

“Quantum chaos and the complexity of spread of states” with V. Balasubramanian, J.M. Magan, Q. Wu,
Phys. Rev. D. 106 (2022) 4, 046007

“Geometry of Krylov Complexity” with J.M. Magan, D. Patramanis Phys. Rev. Res. 4, 013041

Upcoming paper with J.M. Magan (Bariloche) and D. Patramanis (UW)



General Problem

Unitary evolution of states or operators (QM or QFT):
i0; U (t)) = H [V (t)) 0:0(t) = i[H, O(1)]

(t)) = e " |W(0)) O(t) = et O(0)e

Generically, a “simple” reference quantum state |¥(0)) “spreads” and becomes
“‘complex” (in Hilbert space)

Generically, a “simple” operator O(0) “grows” and becomes “complex”
(in operator space)

How to quantity this Quantum Complexity?



Motivation/Intuition:

Ot) = et O(0)e "t = O(0) + it[H, O(0)] + (Z;)Q (H, [H,0(0)] + ...

E.Q.
H=> (Z+Zis1+ B Xi + B. Z;) O(0) = X, .
2
O(t) = X1 —2t(Y7 - Zs + B, Y1)
6
—2t%(B,Y,-Ys — ByB,Z1 — ByZy - Zy + 2B, X, - Zo + B2X | + X1 - Z3)
13
SR A (T )

Common lore: the more “chaotic” H, the faster the operator grows.

How to quantify this: A universal definition of the operator size/complexity?

Physics: Definition of Quantum Chaos” ETH, thermalisation...?”



Motivation: Complexity in Holography (HEP)?

BH (ERB) continues to grow with t but entanglement entropy saturates (“not enough”)

What is the “CFT dual” of this (ERB) growth? “Complexity" of the TFD state”?

[Hartman&Maldacena '13] (2d CFT)

Time-evolved Thermofield-Double state

Wy (1)) = e iR

Ly
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Universal (useful) notion of complexity”? Unexplored in QFT (CFT)...

[PC,Kundu,Miyaji, Takayanagi,Watanabe’17][Jefferson,Myers; Chapman,Heller,Marrochio,Pastawski’17]

[PC,Magan’18] [Flory,Heller’20] [Erdmenger,Flory,Gerbershagen,Heller,Weigel’22]...

[Susskind,’14]



Universal framework for guantum complexity? [Balasubramanian, PC, Magan, Wu "22]

iao ial iaz

This talk: describe a notion(s) of guantum complexity based on the Krylov basis

that can be universally defined (and computed) in systems from QM to QFTs

and show some recent results, including Modular Hamiltonian evolution



Basic ldea

Given

W (1)) = e 1 |W(0)) O(t) = e'HtO(0)e 1t = £ 0(0)

More generally we can think about quantum circuits (circuit H and circuit t)

We can expand them in a certain basis (Krylov basis):
(1) = e " [ Wo) =) ¢n(t) [Kn) O(t) = £ |00) = > ou(t) |O)
Unitarity: Probability distribution
pn(t) = [én(t)|° D lon(®))? =1

We will use this probability to characterise the evolution/growth and “complexity”.



Aleksey Nikolaevich Krylov (1863-1945)

Russian naval engineer and applied mathematician.

His mother Sofya Lyapunova came from the famous “Lyapunov’
family and Alekandr Lyapunov was his cousin.

He became tamous for pioneering “Theory of oscillating motions of
the ship”.

In 1904 he built the first machine in Russia for integrating ODEs.

In 1931 he wrote a paper on Krylov subspace: A nxn matrix and b n-vec.
K.(A,b) = span {b, Ab, A*b, ..., A" 'b}

He was interested in efficient diagonalization of matrices
and computation of characteristic polynomial coefficients.

“... he was concerned with efficient computations and counted

computational work/complexity as the number of separate numerical
multiplications ”



Krylov Basis [Recursion Method: Viswanath,Muller *63]

Unitary evolution/Q-circuit

w(o) = gy = 3 T

Goal: Given states

‘\Ifn> — {|\I/0> ,H |\I/0> g sevy Hn |\IJO> ) }
construct an orthonormal basis |K,,) recursively (Lanczos algorithm, G-S):
[Ant1) = (H — an)|[Kn) — bn|Kn-1), |Kn) = bT_Ll‘An>

with “Lanczos coefficients”:

an = (K| H|K,), by = (A, |A,)Y?

Such that bg = 0 and |Ky) = |¥y)



Krylov Basis

[Recursion Method: Viswanath,Muller ’63]

In the Krylov basis, the Hamiltonian becomes tri-diagonal

(ao b1 0 0 \
bl ap b2 0

H’Kn> — an’K’n> T bn+1|Kn-|-1> + bn‘Kn—1> <Km| H |Kn> - 8 bO2 Z2 ;

\ P b )

“Hessenberg form”

Expanding our state in the Krylov basis

T (1)) = e~ W) Z% K,) S e =3 pa =1

By construction, we have a Schrddinger equation for the coefficients (amplitudes)

10 [W(t)) = > i0pn(t) | Kn)

n

10, |U(t)) = Z bn () = [an®n(t) + bndn_1(t) + bns1dni1(t)] | Ky)

n

10t Pn (1) = Andn(t) + bndn_1(t) + bpi1Pna1(t) Pn(0) = 0n 0




| anczos coef. from return amD”tUde [Recursion Method: Viswanath,Muller ’63]

[Balasubramanian, PC, Magan, Wu ’22]

Lanczos coeft. are encoded in the "return amplitude” (auto-correlator, Loschmidt amp.)

S(t) = (U(t)|2(0)) = (Lole™" o) = 5(1)

Moments
d" no
pin = S| = WO e (0)| = (Kol(iH)" | Ko)

t=0 atr t=0

Knowing moments allows to find Lanczos coefficients (algorithm)

e.g. (Kol (iH)|Ko) = iag (Kol (iH)" |Ko) = —ag — b}

Inverse relations:

ap = —ip1, b% = ,U% — M2

—>( 1 —>( 2 —>{ 3 —>
tao U tao U 140 U a0

- ,L-M:f — 21 o + 3 B2 _ W 4 3+ pipg — 201 oy — Hafis
— 2 —
/ﬁ% — U2 (M% — f2)?

Physics of Lanczos coeff?
[Balasubramanian, Magan, Wu ’22]



[Recursion Method: Viswanath,Muller ’63]
[Parker, Cao, Avdoshkin, Scaffidi, Altman ’19]

Operator Growth in the Krylov Basis

Heisenberg evolution
2:0(t) = i[H,O(t)] O(t) = ¢t O(0) ¢~ iH!
Formally, we can write the operator as

~ ~

O(t) — i (Zt)'n @n @0 = O, O, = [H, O], Oy = [H, [H, OH,

n

Liouvillian (super)operator

L=[H, ], Ot =e*0o 0, = LO.

Given {O,L0,L?0,...} weneed a basis (GNS) [0) L]|O) = |[H,O))

We should pick an inner product:

B
(AIB)f = / g(N) (M ATe™ B AN (A)p= S Te (e P1A), 7 =Tr (e M)

8
g(A) =0, g(B—A)=g(N), %/O dAg(A) = 1.



ODerator GI’OWth in the KI’V|OV Basis [Recursion Method: Viswanath,Muller '63]
' . [Parker, Cao, Avdoshkin, Scaffidi, Altman ’19]

The most common: Wightman

(A|B) = (efF/2 ATe=HP/2 B) 4 g(\) =6\ — B/2)

Then we follow the Lanczos algorithm.

Most of the inner products will involve Tr() so we don’t need a,, = 0

O(t)) = e“0) = Y i"pn(t)|Oy)

n

Schrodinger equation:

8t90n(t) — bn‘Pn—l(t) - bn+190n+1(t) Spn(o) = 0n,0

Lanczos coefficients are encoded in the return amplitude

S(t) = (0]O(1)) = (Oole’“"|Op) = Zrnw\m )26 (5 710) B (5 +it)



Krylov Basis Summary

States

T (1)) = e [Wy) Zcbn

S Ioa®P =Y pa=1

Zat¢n (t) — an¢n (t) + bn§bn—1(t) + bn—l—l ¢n—|—1(t)

S(t) = (T(1)[(0)) = (Tole"™*[To) = 5 (¢)

Operators

O(t)) = e“10) = Y i"pn(t)|Oy)

n

S lenlP =3 pa =1

atgpn (t) — bngpn—l(t) — bn—|—190n—|—1(t)

S(t) = (0(0)|O(t)) = (Oole™"|O0) = wol(t)

Connections:

E.g. Wightman

B(t)) = pi *OL(t)p5 " s)



Kry|ov/8pread ComDIexF[y [Parker, Cao, Avdoshkin, Scaffidi, Alitman ’19]

[Balasubramanian, PC, Magan, Wu ’22]

The physics of the growth/evolution <=> motion of a particle on a chain

b1 bo b3 by,

O OO O

¥0o P1 ¥©2 Y3

The further in the chain the particle is, the more “complex” state in the Krylov
basis needs to be employed (to represent the state or the operator)

A natural definition of “complexity” as an average position on the chain:

Zn\cbn — (U(1)| K| (L) R =Y"n|K.)(K

Important: Evolution can be characterised with Ql/Probability tools:

K-entropy Sk = — an logp,  K-variance, K-capacity, Cx = e K

[Barbon, Rabinovici, Shir, Sinha ’19] [PC, Datta ’21] [Patramanis ’21]. ....



_Comment: Comolexr[y’? [Balasubramanian, PC, Magan, Wu ’22]

Starting from the state: | (t)) = e | (0))

Complexity = “Spread in Hilbert space”

Take a basis: B={|B,) :n=0,1,2,---} and a “cost function” (a family, ¢, = n)

Cp(t) = ch|<¢(t)‘3n>‘2 = chplg(n,t)

n n

C'(t) = min Ci(t) minimum (finite t) for the
B Krylov basis!

Intuition (Induction): For discrete time evolution, assume N-1 vectors equal to the
Krylov basis. Then in the next step:

[Wn) = o |Kn) +pylx))



[Parker, Cao, Avdoshkin, Scaffidi, Altman ’19]
Extensive studies of the operator growth [Barbon, Rabinovici, Shir, Sinha '19]

[Rabinovici, Sanchez-Garrido, Shir, Sonner ’21°22]

Numerics (Operator growth in XXZ chain + Integrability breaking terms, RMT)

n Lanczos  wavefunction | K-complexity = time scales
. coefficients 5 §
Linear growth - Exponential growth
inn in time f
l<n<sS b, ~ an [ EONtNlogS
S—#dof Plateau, - . Linear growth in
constantinn | T ? time
n>S s t 2 logS
b,~AS ©
>
Descent
n~e* t ~e?

Continuum limit:  z=-en, @(z,t) = p,(t), v(z) = 2eb, = 2eb(en)

1
Orp(z,t) 4+ v(x)0yp(x, t) + §v’(a:)g0(:v,t) =0 (cont. eq for p = |o|*)



Complexity of the TED evolution [Balasubramanian, PC, Magan, Wu "22]

Consider the TFD state

1 B
W) = e” 2% n, n) Z(B) =Y e P
JZ(5) > D=2
and its time evolution [Hartman,Maldacena *13]
—iHt
Yp(t)) = e " i) H=Hp+Hr  H=Hyp
Goal: expand this state in the Krylov basis and compute complexity.

| anczos coefficients from the moments of

S(t) = (Vg(t)|Vs) = (~SFF)!  [Polchinski et al. *16]

Non-universal, can be extracted once we know Z (spectrum!).

See [Balasubramanian, PC, Magan, Wu ’22]



Fvolution of the TFD for RMT [Balasubramanian, PC, Magan, Wu ’22]
[J. Erdmenger, S-K. Jian, Z-Y Xian ’23]

Late Times: “Black Holes and RM” [Polchinski et al. *16]

Consider a random Hamiltonian (NxN, Hermitian matrix, GUE,...)

—0.625778 4 0.1 0.0534572 — 0.238692: —0.106837 + 0.170713¢
H =1 0.0534572 + 0.238692¢ 0.518485 + 0.2 0.995288 — 0.08132022
—0.106837 — 0.170713z  0.995288 4 0.0813202: —0.589891 + 0.2

We can easily diagonalise it, compute SFF, moments, Lanczos, etc.

We want to put it into the tri-diagonal form /ZO Zl z? g :::\
. 0 bz a9 bg

and exponentiate 0 0 by ag -
IR

There exist very efficient algorithms/libraries (Python or Mathematica) to put a matrix into
this form (Hessenberg). So we can also read off Lanczos coeff. this way.

We also need to “rotate” a TFD into vec: {1,0,0,....}

Then applying exp(-iHt) to the initial state gives all the (bn(t)



[Balasubramanian, PC, Magan, Wu ’22]

Evolution of the TFD for RMT [J. Erdmenger, S-K. Jian, Z-Y Xian ’23]

Complexity for TFD evolved with GUE Hamiltonian (Similar for GOE,GSE,SYK)

Early time Ramp, Peak, Slope, Plateau
6 50
0.6
> 40 0.5
S 4 30 5 0.4
&J 3 Q. So3
IQ). 2 20 © 0.2 /
1- 10 0.1 ‘
0 1 f/ 0.0 1 /
0.0 05 10 15 20 5’5 30 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
B3¢ » t/N
N = {1024, 1280, 1536, 1792, 2048, 2560, 3072, 3584, 4096 }
o006 t=0 t=1000 t=2000 t=3000 t=4000 Slope; Dlp; Ramp; Plateau
0.004 1 ) ‘- GUE uncorrelated|
0.002 A . _4]
0.000 M ’t 6
t=5000 t=6000 t=7000 t=8000 t=40000 )
0.006 g N
0.004 A -
_10_
0.002
_12_
0 2500 0 2500 0 2500 0 2500 0 2500 0 2 4 6 8 10 12 14

log(t)
N = 4096 and 5 = 1, averaged over 10 samples of the GUE



Motivation: “Modular Hamiltonian”

Setup: H =Hs®Hp p = [)W]

Reduced density matrix: pa =Trp(p) pa =e 4 Modular Hamiltonian

“Entanglement spectrum”
0) =D Vhalna)lng) A=t Z(B=n) = Tr(ph) = 3 e

Much more information than EE. (e.g. topological order...) [Li,Haldane’08]
Modular flow of operators: O e A

O, = a0 oM A*  Tomita-Takesaki theory

Operator growth and complexity?

Important AdS/CFT: Bulk reconstruction and bulk locality =~ [Jafferis,Lewkowycz,Maldacena,Suh’™19]
[Faulkner,Lewkowycz’17]

e(Xr) = /Rde/deﬁ,s(Xr‘fcR)Os(w)a Os(zR) = p;s/%O(a:R)piRs/%



Spread/Krylov complexity of Modular Evolution? [PC, J. Magan, D.Patramanis...]

1. States: Modular Spread Complexity

VE) =Y VAdla) 4 la), Vp(s)) = e PHa®ls | pl/2)

Return amplitude: | |
S(s)=Tr (pl ) = Z(1 —is)

or in terms of Renyi entropies

—18 n 1 n
S(s) = exp (ZS SS )) 51(4 ) = 1 log(Trp's)

— N

Moments and Lanczos coefficients become interesting QI probes:

EE: a9 = (Hs) =S54 Capacity of E: b5 = (H3) — (Hy)?



Toy example: Qubit [PC, J. Magan, D.Patramanis...]

[¥) = v/pl00) + /1 —p|L1)
: . _ ,—H H —
Modular Hamiltonian: p=c 1 ( 0 —log(1 — p)

Modular Z: Tr(p}) =p" + (1 —p)"
Return amplitude:
e = (—0)* (plog®(p) + (1 — p) log"(1 — p))

S(S) _ pl—zs i (1 _p)l—zs _ Zﬂk%
k=0

Compute Lanczos coeft. and put it in the Krylov basis (tri-diag):

B —plog(p) — (1 —p)log(l —p)  £+/p(1 —p) (log(1 — p) —log(p)),
Kl H|Km) = <i P ) (log(1 — p) ~log(p)).  —plog(1 —p) - (1 - p) log(p) )

Modular spread complexity:




Modular flow of OperatOrS [PC, J. Magan, D.Patramanis...]

Total Modular Hamiltonian is well defined in the continuum:
O(s) = e*H Qe H=H,®1p—14® Hp
In 2d CFTs for a single interval A=[a,b] in the vacuum we have (SL(2,R))
H=s_1L_1+ soLo+s1L1 + bar

Return amplitudes

We can extract modular Krylov complexity

C(s) = 2hf(a,b)sinh?(7s) Universal exponent of the modular growth

Future: Modular chaos from the operator growth? [de Boer, Lamprou "19)]

[de Boer, Jafferis, Lamprou ’22]



Conclusions

 New: Krylov/Spread Complexity for operators/states in many-body systems |

« Computable: analytically and numerically for discrete models and QFTs

* New tool for interesting many-body setups (topological phases)

 (Crucial ingredient: Return amplitude (2- and higher-point function, SFF etc.)

« Evolution of TFD in RM: Ramp, Peak, Slope, Plateau

 New direction: Spread/Krylov of the modular evolution

 New understanding of entanglement spectra and modular evolution?

« Complexity of local operators in the bulk?



Many Open Problems

Universal laws for Spread/Krylov complexity? Is it useful for Ql or QC?

* Integrable vs Chaotic growth? Is it sensitive? At which time regime?

* Purely Integrable models? Can we study it using integrability (not just numerics)?
e Interesting states”? More complicated objects (defects, boundaries)?
* (eneralisations: Time dep H(t), Open systems etc.

* Precise connection with Holography? Length in JT [Lin'22, Rabinovici et al. '23]7 QGr?

e Late-time physics of AdS/CFT and extremal Black-Holes? [Boruch et al ]

Thank You! Stay Tuned! Join the fun ;)




Spread complexity of formation [PC, S. Liu *22]

E, L1 1
[Ug) = \/—Z nn) Hp = Hp=w(id ), Ba=w(nt )
We can write this state as
_ _irH T t 1 —Bw _ 2
(Wg) =¢€""10,0) H = a(ajay + a1a2) e = tanh”(ar)
Action in the eigenstates |K,,) = |n,n)
HI|K,) = a(n+1) |[Kpp1) +an|[Kn1)
Expansion
. tanh™ (ar) 1 B
W — " n Kn n — — 20
) = 31" (r) 1K) onlr) = oohar) = 75
Krylov complexity (of formation)
1
C — n — h2 En p— ~ AE
Zn:nlcp (r)|? = sinh”(ar) Zne o
. . [M.Berkooz, P.Narayan, J.Simon’18]
General (e.g. T-matrix and chords in DSSYK, AdS2 length ) [H.Lin’22][Rabinovici,Sanchez-

Garrido,Shir,Sonner’23]



Probe of topological phases?

SSH model (polyacetylene)

H

Depending on t's the ground state of the model SU(2) CS:

11
2" 2/,

) = T Mpe ™ (F) 27+

k>0

. R R
sm¢k:%, COS¢k:§37

Ry = t; —tacos(k) Rz = tasin(k) R = \/t% + t5 — 2t1to cos(k).

represents non-topological phase (11>t2) or
topological insulator (t1<t2).

We can use Krylov methods to compute spread
complexity of formation for a single momentum
and then sum over.

H

~C

N
N~
H = tl Z (CLZ.CB,L' —+ hC) — tQ Z (CIBZ'CA,*L'—I—I + hC) ?

I
H

OO 7I ) L L L Il L L L Il L L L Il L L L Il L L L I7
0.0 02 0.4 06 0.8 10 1

= 2
Ccltrt) =2 [ &

~ C//C ~ C//C ~ C//C ~ C//C ~ C//C N

[PC, S. Liu ’22]

H H H H H |
I I I I I

I | I I
H H H H

- N

dk t1 +to — [t; — ta
—Ch = .

1
2 27'I't1

See also Kitaev chain [PC,N. Gupta, S.S.Haque, S. Liu, J. Murugan ’22]



