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Based on:



General Problem

@tO(t) = i[H,O(t)]
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O(t) = eiHt
O(0)e�iHt
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i@t | (t)i = H | (t)i
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| (t)i = e�iHt | (0)i
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Generically, a “simple” operator           “grows” and becomes “complex” 
(in operator space)

O(0)
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Generically, a “simple” reference quantum state              “spreads” and becomes 
“complex” (in Hilbert space)

| (0)i
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How to quantify this Quantum Complexity?

Unitary evolution of states or operators (QM or QFT):



Motivation/Intuition:

Common lore: the more “chaotic” H, the faster the operator grows. 

O(t) = e
iHt

O(0)e�iHt = O(0) + it[H,O(0)] +
(it)2

2
[H, [H,O(0)]] + ...
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E.g. 
H =

X

i

(Zi · Zi+1 +BxXi +BzZi)
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O(0) = X1
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Operator Space
Inspiration: random unitary circuits.
I Keyserlingk, Rakovszky, Pollmann, Sondhi, 2017; Nahum, Vijay, Haah, 2017.
I Khemani, Vishwanath, Huse, 2017.

Consider a spin-1/2 system in d-dimensions with translation invariance.

H =
ÿ

xœZd

hx .

We abstract to the space of operators.
operators are “rounded” kets |O)

an example is |O) = X1 ¢ Y2 ¢ Z3 + 0.3Y1 ¢ X2

the inner product is (A|B) := Tr[A†B]/ Tr[1]
the Liouvillian generalizes the Hamiltonian L = [H, ·].
time-evolution from Heisenberg EOM ≠i d |O)

dt = L |O) .

solution |O(t)) = eiLt
|O)

x

t

O(t = 0)

O(t)

Operator growth: an example
Chaotic Ising model

O = X1
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L = [H, ⇤]

<latexit sha1_base64="5NgXh111Qe2RAgWpjbWN073Qv4E=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBZBREoiFd0IRTdduKhgH5CGMplO26GTBzMTsYT8ihsXirj1R9z5N07aLLT1wMDhnHu5Z44XcSaVZX0bhZXVtfWN4mZpa3tnd8/cL7dlGAtCWyTkoeh6WFLOAtpSTHHajQTFvsdpx5vcZn7nkQrJwuBBTSPq+ngUsCEjWGmpb5Z7PlZjgnlyl14jp3F26vbNilW1ZkDLxM5JBXI0++ZXbxCS2KeBIhxL6dhWpNwEC8UIp2mpF0saYTLBI+poGmCfSjeZZU/RsVYGaBgK/QKFZurvjQT7Uk59T09mSeWil4n/eU6shlduwoIoVjQg80PDmCMVoqwINGCCEsWnmmAimM6KyBgLTJSuq6RLsBe/vEza51W7Vr24r1XqN3kdRTiEIzgBGy6hDg1oQgsIPMEzvMKbkRovxrvxMR8tGPnOAfyB8fkDtlOTlA==</latexit>

Liouvillian
H =

X

i

(Zi · Zi+1 +BxXi +BzZi)
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O(t) = X1 � 2t(Y1 · Z2 +BzY1)
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�2t2(BxY1 · Y2 �BxBzZ1 �BxZ1 · Z2 + 2BzX1 · Z2 +B2
zX1 +X1 · Z2

2 )
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2

6

13
+t3(...........)
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How to quantify this: A universal definition of the operator size/complexity?

Physics: Definition of Quantum Chaos? ETH, thermalisation…?



Time-evolved Thermofield-Double state

[Hartman&Maldacena ’13] (2d CFT)

BH (ERB) continues to grow with t but entanglement entropy saturates (“not enough”)

1 2 3 4 5
t

0.2
0.4
0.6
0.8
1.0
SA

(a) Low effective temperature, κ2 = 1

1 2 3 4 5
t

1
2
3
4
5
6
SA

(b) High effective temperature, κ2 = 0.2

Figure 1: Entanglement entropy growth of an interval(r=5) in CC state.

which has also been calculated using BCFT techniques in [6].
It would be interesting to check the monotonicity of EE growth in gCC states. Unfor-

tunately, even for the free fermions with explicit twist operators, the entanglement entropy
in gCC state with W4 charge cannot be explicitly calculated. The bilinear fermionic W4(w)
current when bosonized gives φ4 terms[10], so the bosonized theory is an intereacting theory.

7 Non-Monotonic EE Growth and Dynamical Phase
Transition

Although we could not calculate EE in gCC state with W4 charge of the fermionic bilinear
W4 current, we can still calculate entanglement entropy explicitly with the fermionic charge
corresponding to the bosonic charge W4(w) =

∑

k |k|3d
†
kdk, where d†k and dk are the bosonic

annihilation and creation operators. As mentioned above, the zero modes do not play any
role. Refermionization of the bosonic bilinear W4 is done in Appendix F.5 So, the fermionic
state that we are considering is

|Ψ〉 = e−κ2Hf−κ4W̃4|Df〉 (90)

where the expression for W̃4 is given in (137).
Again, the Rényi and entanglement entropies are given by the expression (77) and (78).

The scalar propagator with the bosonic W4 charge has also been calculated in MPS.

〈φ(0, t)φ(r, t)〉 =
∫ ∞

−∞

dk

8π

eikr

k

[

coth
(

2k
(

κ2 + κ4k
2
))

− cos(2kt)cosech
(

2k
(

κ2 + κ4k
2
))]

(91)

The momentum integral cannot be done explicitly. But we still can plot the entanglement
entropy numerically. Figure (2) are the plots of EE growth with ‘small’ and ‘large’ values of
κ4. As expected, the entanglement entropy reaches an equilibrium quickly.

5We would like to thank Justin David for informing us that this refermionization could be done in principle
using U(1) currents and it has not been done anywhere.
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[Susskind,’14]What is the “CFT dual” of this (ERB) growth? “Complexity" of the TFD state?

HRHL

t� t+

Motivation: Complexity in Holography (HEP)?

| �(t)i = e�i(HL+HR)t 1p
Z(�)

X

n

e�
�
2 En |n, ni

<latexit sha1_base64="wAUsFdiPfCxfcKVXxPhImkNcEFI="></latexit>

Universal (useful) notion of complexity? Unexplored in QFT (CFT)…
[Jefferson,Myers; Chapman,Heller,Marrochio,Pastawski’17][PC,Kundu,Miyaji,Takayanagi,Watanabe’17]

[PC,Magan’18] [Flory,Heller’20] [Erdmenger,Flory,Gerbershagen,Heller,Weigel’22]…



This talk: describe a notion(s) of quantum complexity based on the Krylov basis


that can be universally defined (and computed) in systems from QM to QFTs


and show some recent results, including Modular Hamiltonian evolution

5

III. COMPUTING SPREAD COMPLEXITY

Following Corollary 1, to calculate the spread complex-
ity we must derive the Krylov basis K. We can do this via
the Lanczos algorithm [13], which recursively applies the
Gram–Schmidt procedure to | ni = Hn| (0)i to gener-
ate an orthonormal basis K = {|Kni : n = 0, 1, 2, · · ·}:

|An+1i = (H � an)|Kni � bn|Kn�1i, |Kni = b�1

n |Ani .
(18)

The Lanczos coe�cients an and bn are defined as

an = hKn|H|Kni, bn = hAn|Ani1/2 , (19)

with b0 ⌘ 0 and |K0i = | (0)i being the initial state.
Observe that the Lanczos algorithm (18) implies that

H|Kni = an|Kni+ bn+1|Kn+1i+ bn|Kn�1i . (20)

This means that the Hamiltonian becomes a tri-diagonal
matrix in the Krylov basis. For finite-dimensional sys-
tems, this is known as the “Hessenberg form” of the
Hamiltonian.

A. Krylov basis from the Hessenberg form

Numerically stable algorithms for computing the Hes-
senberg form of a matrix, using Householder reflections
instead of the Gram-Schmidt procedure, are commonly
implemented in libraries like SciPy [32, 33] and Math-
ematica. There are two caveats. First, the “initial
state” used in these implementations is typically fixed at
(1, 0, 0, . . .)T . To start with an arbitrary initial state, we
must first perform a change of basis so that the desired
initial vector has those special coordinates. Second, the
o↵-diagonal values bn are sometimes negative in these im-
plementations. This amounts to a choice of phase in the
definition of the Krylov basis. Taking the absolute value
of all the o↵-diagonal elements solves this issue, and is
equivalent to multiplying some of the vectors of the new
basis by �1, which does not change the physics. From
the Hessenberg form of the Hamiltonian we can directly
read o↵ the Lanczos coe�cients: the an are the diagonal
elements, and the bn are the entries above the diagonal.
The wavefunction in the Krylov basis can be obtained by
exponentiating the Hessenberg form and applying to the
initial state. This procedure has the advantage of being
numerically stable.

B. Krylov basis from the survival amplitude

We can also devise a more general method for com-
puting the Lanczos coe�cients which remains valid for
infinite dimensional systems and the large N limit of fi-
nite dimensional systems. We start by showing how to
compute the Lanczos coe�cients from the “survival am-
plitude”, i.e., the amplitude that the state at time t is the

|K0i |K1i |K2i · · ·

ib1

ib1

ib2

ib2

ib3

ib3

ia0 ia1 ia2

0 1 2 3

· · ·

· · ·

4

· · ·

ia0 ia0 ia0 ia0

ia1 ia1 ia1

ia2

ib1 ib1 ib1 ib1

ib2 ib2

ib3

Figure 1. Top: “Markov chain” representation of iH. Bot-
tom: “Unwrapping” of the Markov chain so that “time” goes
from left to right. In every vertical column of nodes, the bot-
tom node corresponds to |K0i, the first node above corre-
sponds to |K1i and so on. The sum of the weights of the blue
and red paths gives hK0| (iH)2 |K0i.

same as the state at time zero. Defining the expansion
of the evolving state in the Krylov basis as

| (t)i =
X

n

 n(t)|Kni , (21)

the survival amplitude is just

S(t) = h (t)| (0)i = h (0)|eiHt| (0)i =  0(t)
⇤ , (22)

where we recall that |K0i = | (0)i. The survival am-
plitude is also the moment-generating function for the
Hamiltonian in the initial state:

µn =
dn

dtn
S(t)

����
t=0

= h (0)| d
n

dtn
eiHt| (0)i

����
t=0

= hK0|(iH)n|K0i . (23)

The particular form of the action of the Hamiltonian
H in the Krylov basis (20) can be conveniently repre-
sented by an un-normalized “Markov chain” with transi-
tion weights given by the Lanczos coe�cients, as shown
in the upper panel of Fig. 1. The action of iH onP

n dn|Kni is then equivalent to the action of the chain
transition matrix on a chain state vector (d0, d1, · · · ).
If we start with the vector (1, 0, 0, · · · ) and iterate the
chain n times, the weight of the ith node will be the
weight of |Kii in the state (iH)n|K0i. Thus, after n iter-
ations of the chain, the weight of |K0i will be the moment
µn = hK0|(iH)n|K0i.
If we start with a state localized on |K0i, it is con-

venient to “unwrap” the Markov chain as shown in the
bottom panel of Fig. 1. In this representation, the nodes

[Balasubramanian, PC, Magan, Wu ’22]Universal framework for quantum complexity?
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We can expand them in a certain basis (Krylov basis):

| (t)i = e�iHt | 0i =
X
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Unitarity: Probability distribution
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We will use this probability to characterise the evolution/growth and “complexity”.

More generally we can think about quantum circuits (circuit H and circuit t)

|O(t)) = eiLt
|O0) =

X

n

�n(t) |On)
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Aleksey Nikolaevich Krylov (1863-1945)

Russian naval engineer and applied mathematician.

His mother Sofya Lyapunova came from the famous “Lyapunov" 
family and Alekandr Lyapunov was his cousin.

He became famous for pioneering “Theory of oscillating motions of 
the ship”.

In 1904 he built the first machine in Russia for integrating ODEs.

In 1931 he wrote a paper on Krylov subspace: A nxn matrix and b n-vec.

He was interested in efficient diagonalization of matrices 
and computation of characteristic polynomial coefficients.

“… he was concerned with efficient computations and counted 
computational work/complexity as the number of separate numerical 
multiplications ”



Krylov Basis

Unitary evolution/Q-circuit

construct an orthonormal basis           recursively (Lanczos algorithm, G-S):

Goal: Given states 

{| 0i , H | 0i , ..., Hn | 0i , ...}
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B. Complexity as the exponential of an entropy

It is natural to quantify the spread of the wavefunc-
tion as the exponential of the entropy of the probability
distribution of weights in an orthonormal basis B. This
provides an alternative definition of complexity

CSB = eSB , (12)

where

SB(t) = �
X

n

pB(n, t) log pB(n, t) (13)

is the Shannon entropy of the basis weight distribution.
Complexity defined in this way measures the minimum
Hilbert space dimension required to store the probability
distribution of basis weights.

We can again eliminate the basis ambiguity by defin-
ing quantum state complexity as the minimum over all
choices of basis. In fact, this entropic definition of com-
plexity is also minimized in the Krylov basis. To show
this, suppose that B does not contain the entire Krylov
basis. Then for some N , the first N elements of the
Krylov basis are in B, up to a phase factor, and the
(N +1)th element is not present. Since the entropy func-
tion is independent of the order of the basis, we can let
these be the first N elements of the basis. Therefore, for
n < N we have have pB(n, t) = pK(n, t) for all t. So to
see the di↵erence between the entropies we just need to
analyze pB(n, t) for n > N .

Now, by Lemma 1, for n � N , the first 2N derivatives

of the probability vanish. More concretely p(m)

B
(n, 0) =

dmpB(n, 0)/dtm = 0 for n � N and m < 2N . Expanding
pB(n, t), for n � N as a Taylor series in t around t = 0,
the first non-vanishing term is

pB(n, t) =
p(2N)

B
(n, 0) t2N

(2N)!
+O(t2N+1) . (14)

The di↵erence in entropy between two bases that agree in
the first N Krylov vectors lies in the sum �

P
n
pn log pn,

for n � N . So we now introduce the expansion (14) in
the entropy sum �

P
n�N

pn log pn, and split the logarithm

of pn to obtain two sums, the first involving log(t2N ) and

the second involving log(p(2N)

B
(n, 0)/(2N)!).

The first sum, after dropping terms of O(t2N+1 log t)
coming from the corrections in (14), is

� t2N log(t)

(2N � 1)!

X

n�N

p(2N)

B
(n, 0) . (15)

From the proof of Lemma 2 above, Eq. 8 shows thatP
n�N p(2N)

B
(n, 0) =

P
n�N

�
2N
N

�
hX|Bni hBn|Xi where

|Xi / |KN i is the component of HN | i orthog-
onal to the first N elements of the Krylov basis.
Hence |Xi is also orthogonal to |Bn<N i. Thus we

can extend the sum above to get
P

n�N p(2N)

B
(n, 0) =

P
n�0

�
2N
N

�
hX|Bni hBn|Xi. By completeness of the ba-

sis we can then write
P

n�N p(2N)

B
(n, 0) =

�
2N
N

�
hX|Xi.

Hence this first term in the sum will not be a↵ected by
the remaining elements of the basis beyond the first N
elements that were assumed to be the same as those of
the Krylov basis.
The second sum is

� t2N
X

n�N

p(2N)

B
(n, 0)

(2N)!
log

 
p(2N)

B
(n, 0)

(2N)!

!
. (16)

For this sum, note that � x
(2N)!

log
⇣

x
(2N)!

⌘
is a strictly

convex function for x > 0. Since the probability is always
positive, and for n � N , pB(n, 0) = 0, the leading order

term in the Taylor expansion in (14), p(2N)

B
(n, 0) must

be positive. Since the sequence (
�
2N
N

�
hX|Xi , 0, 0, . . .)

majorizes any sequence of positive numbers that sum to�
2N
N

�
hX|Xi, Karamata’s inequality implies that the coef-

ficient of t2N in the expansion will always be larger than

or equal to the case where p(2N)

B
(n, 0) = 0 for all n ex-

cept one particular n⇤ where p(2N)

B
(n⇤, 0) =

�
2N
N

�
hX|Xi.

Due to the strict convexity, this inequality is strict except
for the case when the previous two equations are exactly
satisfied, which can only happen if some element in the
basis were proportional to |Xi / |KN i.
Given two functions of the form f0(t) = ↵0 t2N +

O(t2N+1 log t) and f1(t) = ↵1 t2N + O(t2N+1 log t) with
↵0 < ↵1, there is some t0 such that for t < t0, f0(t) <
f1(t). Since the first sum (15) is the same for both the
Krylov basis and B, and the second sum (16) has the
form ↵ t2N+O(t2N+1 log t) there exists some t0 such that
SK(t) < SB(t) for t < t0.
We conclude that the Krylov basis also minimizes com-

plexity when defined in terms of the entropy of the spread
of the initial state over a basis.

III. COMPUTING COMPLEXITY

Following Corollary 1, to calculate complexity we must
derive the Krylov basis K. We can do this via the
Lanczos algorithm [13], which recursively applies the
Gram–Schmidt procedure to | ni = Hn| (0)i to gen-
erate an orthonormal basis K = {|Kni : n = 0, 1, 2, · · ·}:

|An+1i = (H � an)|Kni � bn|Kn�1i, |Kni = b�1

n |Ani .
(17)

The Lanczos coe�cients an and bn are defined as

an = hKn|H|Kni, bn = hAn|Ani1/2 , (18)

with b0 ⌘ 0 and |K0i = | (0)i being the initial state.
Observe that the Lanczos algorithm (17) implies that

H|Kni = an|Kni+ bn+1|Kn+1i+ bn|Kn�1i . (19)
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The Lanczos coe�cients an and bn are defined as
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[Recursion Method: Viswanath,Muller ’63]
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�
hX|Bni hBn|Xi. By completeness of the ba-

sis we can then write
P

n�N p(2N)

B
(n, 0) =

�
2N
N

�
hX|Xi.

Hence this first term in the sum will not be a↵ected by
the remaining elements of the basis beyond the first N
elements that were assumed to be the same as those of
the Krylov basis.
The second sum is

� t2N
X

n�N

p(2N)

B
(n, 0)

(2N)!
log

 
p(2N)

B
(n, 0)

(2N)!

!
. (16)

For this sum, note that � x
(2N)!

log
⇣

x
(2N)!

⌘
is a strictly

convex function for x > 0. Since the probability is always
positive, and for n � N , pB(n, 0) = 0, the leading order

term in the Taylor expansion in (14), p(2N)

B
(n, 0) must

be positive. Since the sequence (
�
2N
N

�
hX|Xi , 0, 0, . . .)

majorizes any sequence of positive numbers that sum to�
2N
N

�
hX|Xi, Karamata’s inequality implies that the coef-

ficient of t2N in the expansion will always be larger than

or equal to the case where p(2N)

B
(n, 0) = 0 for all n ex-

cept one particular n⇤ where p(2N)

B
(n⇤, 0) =

�
2N
N

�
hX|Xi.

Due to the strict convexity, this inequality is strict except
for the case when the previous two equations are exactly
satisfied, which can only happen if some element in the
basis were proportional to |Xi / |KN i.
Given two functions of the form f0(t) = ↵0 t2N +

O(t2N+1 log t) and f1(t) = ↵1 t2N + O(t2N+1 log t) with
↵0 < ↵1, there is some t0 such that for t < t0, f0(t) <
f1(t). Since the first sum (15) is the same for both the
Krylov basis and B, and the second sum (16) has the
form ↵ t2N+O(t2N+1 log t) there exists some t0 such that
SK(t) < SB(t) for t < t0.
We conclude that the Krylov basis also minimizes com-

plexity when defined in terms of the entropy of the spread
of the initial state over a basis.

III. COMPUTING COMPLEXITY

Following Corollary 1, to calculate complexity we must
derive the Krylov basis K. We can do this via the
Lanczos algorithm [13], which recursively applies the
Gram–Schmidt procedure to | ni = Hn| (0)i to gen-
erate an orthonormal basis K = {|Kni : n = 0, 1, 2, · · ·}:

|An+1i = (H � an)|Kni � bn|Kn�1i, |Kni = b�1

n |Ani .
(17)

The Lanczos coe�cients an and bn are defined as

an = hKn|H|Kni, bn = hAn|Ani1/2 , (18)

with b0 ⌘ 0 and |K0i = | (0)i being the initial state.
Observe that the Lanczos algorithm (17) implies that

H|Kni = an|Kni+ bn+1|Kn+1i+ bn|Kn�1i . (19)

with “Lanczos coefficients”:

Such that and |K0i = | 0i
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Krylov Basis [Recursion Method: Viswanath,Muller ’63]

In the Krylov basis, the Hamiltonian becomes tri-diagonal 
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B. Complexity as the exponential of an entropy

It is natural to quantify the spread of the wavefunc-
tion as the exponential of the entropy of the probability
distribution of weights in an orthonormal basis B. This
provides an alternative definition of complexity

CSB = eSB , (12)

where

SB(t) = �
X

n

pB(n, t) log pB(n, t) (13)

is the Shannon entropy of the basis weight distribution.
Complexity defined in this way measures the minimum
Hilbert space dimension required to store the probability
distribution of basis weights.

We can again eliminate the basis ambiguity by defin-
ing quantum state complexity as the minimum over all
choices of basis. In fact, this entropic definition of com-
plexity is also minimized in the Krylov basis. To show
this, suppose that B does not contain the entire Krylov
basis. Then for some N , the first N elements of the
Krylov basis are in B, up to a phase factor, and the
(N +1)th element is not present. Since the entropy func-
tion is independent of the order of the basis, we can let
these be the first N elements of the basis. Therefore, for
n < N we have have pB(n, t) = pK(n, t) for all t. So to
see the di↵erence between the entropies we just need to
analyze pB(n, t) for n > N .

Now, by Lemma 1, for n � N , the first 2N derivatives

of the probability vanish. More concretely p(m)

B
(n, 0) =

dmpB(n, 0)/dtm = 0 for n � N and m < 2N . Expanding
pB(n, t), for n � N as a Taylor series in t around t = 0,
the first non-vanishing term is

pB(n, t) =
p(2N)

B
(n, 0) t2N

(2N)!
+O(t2N+1) . (14)

The di↵erence in entropy between two bases that agree in
the first N Krylov vectors lies in the sum �

P
n
pn log pn,

for n � N . So we now introduce the expansion (14) in
the entropy sum �

P
n�N

pn log pn, and split the logarithm

of pn to obtain two sums, the first involving log(t2N ) and

the second involving log(p(2N)

B
(n, 0)/(2N)!).

The first sum, after dropping terms of O(t2N+1 log t)
coming from the corrections in (14), is

� t2N log(t)

(2N � 1)!

X

n�N

p(2N)

B
(n, 0) . (15)

From the proof of Lemma 2 above, Eq. 8 shows thatP
n�N p(2N)

B
(n, 0) =

P
n�N

�
2N
N

�
hX|Bni hBn|Xi where

|Xi / |KN i is the component of HN | i orthog-
onal to the first N elements of the Krylov basis.
Hence |Xi is also orthogonal to |Bn<N i. Thus we

can extend the sum above to get
P

n�N p(2N)

B
(n, 0) =

P
n�0

�
2N
N

�
hX|Bni hBn|Xi. By completeness of the ba-

sis we can then write
P

n�N p(2N)

B
(n, 0) =

�
2N
N

�
hX|Xi.

Hence this first term in the sum will not be a↵ected by
the remaining elements of the basis beyond the first N
elements that were assumed to be the same as those of
the Krylov basis.
The second sum is
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X
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p(2N)
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(2N)!
log
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!
. (16)

For this sum, note that � x
(2N)!

log
⇣
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(2N)!

⌘
is a strictly

convex function for x > 0. Since the probability is always
positive, and for n � N , pB(n, 0) = 0, the leading order

term in the Taylor expansion in (14), p(2N)

B
(n, 0) must

be positive. Since the sequence (
�
2N
N

�
hX|Xi , 0, 0, . . .)

majorizes any sequence of positive numbers that sum to�
2N
N

�
hX|Xi, Karamata’s inequality implies that the coef-

ficient of t2N in the expansion will always be larger than

or equal to the case where p(2N)

B
(n, 0) = 0 for all n ex-

cept one particular n⇤ where p(2N)

B
(n⇤, 0) =

�
2N
N

�
hX|Xi.

Due to the strict convexity, this inequality is strict except
for the case when the previous two equations are exactly
satisfied, which can only happen if some element in the
basis were proportional to |Xi / |KN i.
Given two functions of the form f0(t) = ↵0 t2N +

O(t2N+1 log t) and f1(t) = ↵1 t2N + O(t2N+1 log t) with
↵0 < ↵1, there is some t0 such that for t < t0, f0(t) <
f1(t). Since the first sum (15) is the same for both the
Krylov basis and B, and the second sum (16) has the
form ↵ t2N+O(t2N+1 log t) there exists some t0 such that
SK(t) < SB(t) for t < t0.
We conclude that the Krylov basis also minimizes com-

plexity when defined in terms of the entropy of the spread
of the initial state over a basis.

III. COMPUTING COMPLEXITY

Following Corollary 1, to calculate complexity we must
derive the Krylov basis K. We can do this via the
Lanczos algorithm [13], which recursively applies the
Gram–Schmidt procedure to | ni = Hn| (0)i to gen-
erate an orthonormal basis K = {|Kni : n = 0, 1, 2, · · ·}:

|An+1i = (H � an)|Kni � bn|Kn�1i, |Kni = b�1

n |Ani .
(17)

The Lanczos coe�cients an and bn are defined as

an = hKn|H|Kni, bn = hAn|Ani1/2 , (18)

with b0 ⌘ 0 and |K0i = | (0)i being the initial state.
Observe that the Lanczos algorithm (17) implies that

H|Kni = an|Kni+ bn+1|Kn+1i+ bn|Kn�1i . (19)hKm|H |Kni =
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Expanding our state in the Krylov basis

| (t)i = e�iHt | 0i =
X

n

�n(t) |Kni
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By construction, we have a Schrödinger equation for the coefficients (amplitudes)

i@t�n(t) = an�n(t) + bn�n�1(t) + bn+1�n+1(t)

<latexit sha1_base64="1VodID/pXwnaOf9rZHhn0oefnp8="></latexit>

�n(0) = �n,0
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<latexit sha1_base64="XC3Msz6Aw5NLKhLshiwukaoTIqw=">AAACD3icbVDLSsNAFJ34rPUVdelmsCh1U5JS0Y1QdOOygn1AE8NkOmmHTiZxZlIoaf/Ajb/ixoUibt2682+ctllo64ELh3Pu5d57/JhRqSzr21haXlldW89t5De3tnd2zb39howSgUkdRywSLR9JwigndUUVI61YEBT6jDT9/vXEbw6IkDTid2oYEzdEXU4DipHSkmeeODIJPT5y4h71eFGdju7LDnlI6ADOHBh7/NL2zIJVsqaAi8TOSAFkqHnml9OJcBISrjBDUrZtK1ZuioSimJFx3kkkiRHuoy5pa8pRSKSbTv8Zw2OtdGAQCV1cwan6eyJFoZTD0NedIVI9Oe9NxP+8dqKCCzelPE4U4Xi2KEgYVBGchAM7VBCs2FAThAXVt0LcQwJhpSPM6xDs+ZcXSaNcsiuls9tKoXqVxZEDh+AIFIENzkEV3IAaqAMMHsEzeAVvxpPxYrwbH7PWJSObOQB/YHz+AIgInFM=</latexit>

“Hessenberg form”

1 Magnus Expansion

The main goal is to work generalise the Krylov basis construction for time dependent Hamil-

tonians. The standard root could lead by using the Magnus expansion. Namely, we consider

the following unitary

0

BBBBBB@

a0 b1 0 0 · · ·
b1 a1 b2 0 · · ·
0 b2 a2 b3 · · ·
0 0 b3 a3

. . .

...
...

...
. . .

. . .

1

CCCCCCA
(1.1)

1

i@t | (t)i =
X

n

i@t�n(t) |Kni
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i@t | (t)i = H | (t)i =
X

n

�n(t)H |Kni =
X

n

[an�n(t) + bn�n�1(t) + bn+1�n+1(t)] |Kni

<latexit sha1_base64="0B4bBz+K1H6QIx2LTM6DmTERjBI=">AAACmXicbZFbS8MwFMfTep+3qeCLL8UhKMPRiqIPKl5Qhr5MdCqspaRZugXTtCSnwqj7Tn4W3/w2pl0H3g4E/vmd/zlJToKEMwW2/WmYE5NT0zOzc5X5hcWl5erK6qOKU0lom8Q8ls8BVpQzQdvAgNPnRFIcBZw+BS+Xef7plUrFYvEAg4R6Ee4JFjKCQSO/+s7cBEtgmPvgchrCm9tSbBt2XMl6fTg9af5LXZVGvnCTPvOFxqXpVqOfhhx38DdnPfAzMSy2mdh1hmNUd8awXsBRH2/cN68ZdfarNbthF2H9FU4paqiMll/9cLsxSSMqgHCsVMexE/Cy/NGE02HFTRVNMHnBPdrRUuCIKi8rJju0tjTpWmEs9RJgFfR7RYYjpQZRoJ0Rhr76ncvhf7lOCuGRlzGRpEAFGR0UptyC2Mq/yeoySQnwgRaYSKbvapE+lpiA/syKHoLz+8l/xeNew9lvHNzt184uynHMog20ibaRgw7RGWqiFmojYqwbx8aVcW1umOdm07wZWU2jrFlDP8K8/wJg48zf</latexit>



Lanczos coef. from return amplitude

Lanczos coeff. are encoded in the "return amplitude” (auto-correlator, Loschmidt amp.)
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This means that the Hamiltonian becomes a tri-diagonal
matrix in the Krylov basis. For finite-dimensional sys-
tems, this is known as the “Hessenberg form” of the
Hamiltonian.

A. Krylov basis from the Hessenberg form

Numerically stable algorithms for computing the Hes-
senberg form of a matrix, using Householder reflections
instead of the Gram-Schmidt procedure, are commonly
implemented in libraries like SciPy [32, 33] and Math-
ematica. There are two caveats. First, the “initial
state” used in these implementations is typically fixed at
(1, 0, 0, . . .)T . To start with an arbitrary initial state, we
must first perform a change of basis so that the desired
initial vector has those special coordinates. Second, the
o↵-diagonal values bn are sometimes negative in these im-
plementations. This amounts to a choice of phase in the
definition of the Krylov basis. Taking the absolute value
of all the o↵-diagonal elements solves this issue, and is
equivalent to multiplying some of the vectors of the new
basis by �1, which does not change the physics. From
the Hessenberg form of the Hamiltonian we can directly
read o↵ the Lanczos coe�cients: the an are the diagonal
elements, and the bn are the entries above the diagonal.
The wavefunction in the Krylov basis can be obtained by
exponentiating the Hessenberg form and applying to the
initial state. This procedure has the advantage of being
numerically stable.

B. Krylov basis from the survival amplitude

We can also devise a more general method for com-
puting the Lanczos coe�cients which remains valid for
infinite dimensional systems and the large N limit of fi-
nite dimensional systems. We start by showing how to
compute the Lanczos coe�cients from the “survival am-
plitude”, i.e., the amplitude that the state at time t is the
same as the state at time zero. Defining the expansion
of the evolving state in the Krylov basis as

| (t)i =
X

n

 n(t)|Kni , (20)

the survival amplitude is just

S(t) = h (t)| (0)i = h (0)|eiHt| (0)i =  0(t)
⇤ , (21)

where we recall that |K0i = | (0)i. The survival am-
plitude is also the moment-generating function for the
Hamiltonian in the initial state:

µn =
dn

dtn
S(t)

����
t=0

= h (0)| d
n

dtn
eiHt| (0)i

����
t=0

= hK0|(iH)n|K0i . (22)
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Figure 1. Top: “Markov chain” representation of iH. Bot-
tom: “Unwrapping” of the Markov chain so that “time” goes
from left to right. In every vertical column of nodes, the bot-
tom node corresponds to |K0i, the first node above corre-
sponds to |K1i and so on. The sum of the weights of the blue
and red paths gives hK0| (iH)2 |K0i.

The particular form of the action of the Hamiltonian
H in the Krylov basis (19) can be conveniently repre-
sented by an un-normalized “Markov chain” with transi-
tion weights given by the Lanczos coe�cients, as shown
in the upper panel of Fig. 1. The action of iH onP

n dn|Kni is then equivalent to the action of the chain
transition matrix on a chain state vector (d0, d1, · · · ).
If we start with the vector (1, 0, 0, · · · ) and iterate the
chain n times, the weight of the ith node will be the
weight of |Kii in the state (iH)n|K0i. Thus, after n iter-
ations of the chain, the weight of |K0i will be the moment
µn = hK0|(iH)n|K0i.
If we start with a state localized on |K0i, it is con-

venient to “unwrap” the Markov chain as shown in the
bottom panel of Fig. 1. In this representation, the nodes
of the jth vertical column represent the chain after j it-
erations of the transition matrix. In each column, la-
beled by j, the bottom node (in row 0) corresponds to
|K0i, the first node above (in row 1) corresponds to
|K1i, and so on. The transition weights w(e) of edges
e between columns represent the action of iH defined in
(19). We define the weight of a path of concatenated
edges P = {e1, e2, · · · } as the product of the included
edge weights: w(P ) =

Q
e2P w(e). Finally, we define the

weight of the node 0 to be 1, and the weight of any other
node as a sum of the weights of all paths from 0 to that
node. By construction, the weights in the nth column
are the amplitudes hKj |(iH)n|K0i, and, specifically, the
weight of the bottom node (labeled n) computes the mo-
ments µn = hK0|(iH)n|K0i.

For example we have

hK0| (iH) |K0i = ia0 , (23)

Moments
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This means that the Hamiltonian becomes a tri-diagonal
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tems, this is known as the “Hessenberg form” of the
Hamiltonian.
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Numerically stable algorithms for computing the Hes-
senberg form of a matrix, using Householder reflections
instead of the Gram-Schmidt procedure, are commonly
implemented in libraries like SciPy [32, 33] and Math-
ematica. There are two caveats. First, the “initial
state” used in these implementations is typically fixed at
(1, 0, 0, . . .)T . To start with an arbitrary initial state, we
must first perform a change of basis so that the desired
initial vector has those special coordinates. Second, the
o↵-diagonal values bn are sometimes negative in these im-
plementations. This amounts to a choice of phase in the
definition of the Krylov basis. Taking the absolute value
of all the o↵-diagonal elements solves this issue, and is
equivalent to multiplying some of the vectors of the new
basis by �1, which does not change the physics. From
the Hessenberg form of the Hamiltonian we can directly
read o↵ the Lanczos coe�cients: the an are the diagonal
elements, and the bn are the entries above the diagonal.
The wavefunction in the Krylov basis can be obtained by
exponentiating the Hessenberg form and applying to the
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nite dimensional systems. We start by showing how to
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plitude”, i.e., the amplitude that the state at time t is the
same as the state at time zero. Defining the expansion
of the evolving state in the Krylov basis as
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the survival amplitude is just

S(t) = h (t)| (0)i = h (0)|eiHt| (0)i =  0(t)
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where we recall that |K0i = | (0)i. The survival am-
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Figure 1. Top: “Markov chain” representation of iH. Bot-
tom: “Unwrapping” of the Markov chain so that “time” goes
from left to right. In every vertical column of nodes, the bot-
tom node corresponds to |K0i, the first node above corre-
sponds to |K1i and so on. The sum of the weights of the blue
and red paths gives hK0| (iH)2 |K0i.

The particular form of the action of the Hamiltonian
H in the Krylov basis (19) can be conveniently repre-
sented by an un-normalized “Markov chain” with transi-
tion weights given by the Lanczos coe�cients, as shown
in the upper panel of Fig. 1. The action of iH onP

n dn|Kni is then equivalent to the action of the chain
transition matrix on a chain state vector (d0, d1, · · · ).
If we start with the vector (1, 0, 0, · · · ) and iterate the
chain n times, the weight of the ith node will be the
weight of |Kii in the state (iH)n|K0i. Thus, after n iter-
ations of the chain, the weight of |K0i will be the moment
µn = hK0|(iH)n|K0i.
If we start with a state localized on |K0i, it is con-

venient to “unwrap” the Markov chain as shown in the
bottom panel of Fig. 1. In this representation, the nodes
of the jth vertical column represent the chain after j it-
erations of the transition matrix. In each column, la-
beled by j, the bottom node (in row 0) corresponds to
|K0i, the first node above (in row 1) corresponds to
|K1i, and so on. The transition weights w(e) of edges
e between columns represent the action of iH defined in
(19). We define the weight of a path of concatenated
edges P = {e1, e2, · · · } as the product of the included
edge weights: w(P ) =

Q
e2P w(e). Finally, we define the

weight of the node 0 to be 1, and the weight of any other
node as a sum of the weights of all paths from 0 to that
node. By construction, the weights in the nth column
are the amplitudes hKj |(iH)n|K0i, and, specifically, the
weight of the bottom node (labeled n) computes the mo-
ments µn = hK0|(iH)n|K0i.

For example we have

hK0| (iH) |K0i = ia0 , (23)
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This means that the Hamiltonian becomes a tri-diagonal
matrix in the Krylov basis. For finite-dimensional sys-
tems, this is known as the “Hessenberg form” of the
Hamiltonian.

A. Krylov basis from the Hessenberg form

Numerically stable algorithms for computing the Hes-
senberg form of a matrix, using Householder reflections
instead of the Gram-Schmidt procedure, are commonly
implemented in libraries like SciPy [32, 33] and Math-
ematica. There are two caveats. First, the “initial
state” used in these implementations is typically fixed at
(1, 0, 0, . . .)T . To start with an arbitrary initial state, we
must first perform a change of basis so that the desired
initial vector has those special coordinates. Second, the
o↵-diagonal values bn are sometimes negative in these im-
plementations. This amounts to a choice of phase in the
definition of the Krylov basis. Taking the absolute value
of all the o↵-diagonal elements solves this issue, and is
equivalent to multiplying some of the vectors of the new
basis by �1, which does not change the physics. From
the Hessenberg form of the Hamiltonian we can directly
read o↵ the Lanczos coe�cients: the an are the diagonal
elements, and the bn are the entries above the diagonal.
The wavefunction in the Krylov basis can be obtained by
exponentiating the Hessenberg form and applying to the
initial state. This procedure has the advantage of being
numerically stable.

B. Krylov basis from the survival amplitude

We can also devise a more general method for com-
puting the Lanczos coe�cients which remains valid for
infinite dimensional systems and the large N limit of fi-
nite dimensional systems. We start by showing how to
compute the Lanczos coe�cients from the “survival am-
plitude”, i.e., the amplitude that the state at time t is the
same as the state at time zero. Defining the expansion
of the evolving state in the Krylov basis as

| (t)i =
X

n

 n(t)|Kni , (20)

the survival amplitude is just

S(t) = h (t)| (0)i = h (0)|eiHt| (0)i =  0(t)
⇤ , (21)

where we recall that |K0i = | (0)i. The survival am-
plitude is also the moment-generating function for the
Hamiltonian in the initial state:

µn =
dn

dtn
S(t)

����
t=0

= h (0)| d
n

dtn
eiHt| (0)i

����
t=0

= hK0|(iH)n|K0i . (22)
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transition matrix on a chain state vector (d0, d1, · · · ).
If we start with the vector (1, 0, 0, · · · ) and iterate the
chain n times, the weight of the ith node will be the
weight of |Kii in the state (iH)n|K0i. Thus, after n iter-
ations of the chain, the weight of |K0i will be the moment
µn = hK0|(iH)n|K0i.
If we start with a state localized on |K0i, it is con-

venient to “unwrap” the Markov chain as shown in the
bottom panel of Fig. 1. In this representation, the nodes
of the jth vertical column represent the chain after j it-
erations of the transition matrix. In each column, la-
beled by j, the bottom node (in row 0) corresponds to
|K0i, the first node above (in row 1) corresponds to
|K1i, and so on. The transition weights w(e) of edges
e between columns represent the action of iH defined in
(19). We define the weight of a path of concatenated
edges P = {e1, e2, · · · } as the product of the included
edge weights: w(P ) =

Q
e2P w(e). Finally, we define the

weight of the node 0 to be 1, and the weight of any other
node as a sum of the weights of all paths from 0 to that
node. By construction, the weights in the nth column
are the amplitudes hKj |(iH)n|K0i, and, specifically, the
weight of the bottom node (labeled n) computes the mo-
ments µn = hK0|(iH)n|K0i.

For example we have

hK0| (iH) |K0i = ia0 , (23)
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This means that the Hamiltonian becomes a tri-diagonal
matrix in the Krylov basis. For finite-dimensional sys-
tems, this is known as the “Hessenberg form” of the
Hamiltonian.

A. Krylov basis from the Hessenberg form

Numerically stable algorithms for computing the Hes-
senberg form of a matrix, using Householder reflections
instead of the Gram-Schmidt procedure, are commonly
implemented in libraries like SciPy [32, 33] and Math-
ematica. There are two caveats. First, the “initial
state” used in these implementations is typically fixed at
(1, 0, 0, . . .)T . To start with an arbitrary initial state, we
must first perform a change of basis so that the desired
initial vector has those special coordinates. Second, the
o↵-diagonal values bn are sometimes negative in these im-
plementations. This amounts to a choice of phase in the
definition of the Krylov basis. Taking the absolute value
of all the o↵-diagonal elements solves this issue, and is
equivalent to multiplying some of the vectors of the new
basis by �1, which does not change the physics. From
the Hessenberg form of the Hamiltonian we can directly
read o↵ the Lanczos coe�cients: the an are the diagonal
elements, and the bn are the entries above the diagonal.
The wavefunction in the Krylov basis can be obtained by
exponentiating the Hessenberg form and applying to the
initial state. This procedure has the advantage of being
numerically stable.

B. Krylov basis from the survival amplitude

We can also devise a more general method for com-
puting the Lanczos coe�cients which remains valid for
infinite dimensional systems and the large N limit of fi-
nite dimensional systems. We start by showing how to
compute the Lanczos coe�cients from the “survival am-
plitude”, i.e., the amplitude that the state at time t is the
same as the state at time zero. Defining the expansion
of the evolving state in the Krylov basis as
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the survival amplitude is just
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tom: “Unwrapping” of the Markov chain so that “time” goes
from left to right. In every vertical column of nodes, the bot-
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The particular form of the action of the Hamiltonian
H in the Krylov basis (19) can be conveniently repre-
sented by an un-normalized “Markov chain” with transi-
tion weights given by the Lanczos coe�cients, as shown
in the upper panel of Fig. 1. The action of iH onP

n dn|Kni is then equivalent to the action of the chain
transition matrix on a chain state vector (d0, d1, · · · ).
If we start with the vector (1, 0, 0, · · · ) and iterate the
chain n times, the weight of the ith node will be the
weight of |Kii in the state (iH)n|K0i. Thus, after n iter-
ations of the chain, the weight of |K0i will be the moment
µn = hK0|(iH)n|K0i.
If we start with a state localized on |K0i, it is con-

venient to “unwrap” the Markov chain as shown in the
bottom panel of Fig. 1. In this representation, the nodes
of the jth vertical column represent the chain after j it-
erations of the transition matrix. In each column, la-
beled by j, the bottom node (in row 0) corresponds to
|K0i, the first node above (in row 1) corresponds to
|K1i, and so on. The transition weights w(e) of edges
e between columns represent the action of iH defined in
(19). We define the weight of a path of concatenated
edges P = {e1, e2, · · · } as the product of the included
edge weights: w(P ) =

Q
e2P w(e). Finally, we define the

weight of the node 0 to be 1, and the weight of any other
node as a sum of the weights of all paths from 0 to that
node. By construction, the weights in the nth column
are the amplitudes hKj |(iH)n|K0i, and, specifically, the
weight of the bottom node (labeled n) computes the mo-
ments µn = hK0|(iH)n|K0i.

For example we have

hK0| (iH) |K0i = ia0 , (23)e.g.

6

since there is only one path from 0 to node 1 with weight
ia0, and

hK0| (iH)2 |K0i = �a2
0
� b2

1
, (24)

because there are two paths from node 0 to node 2, one
with weights ia0, ia0 and one with weights ib1, ib1.

Computing the values of µ0, . . . , µn from an, bn using
this path sum takesO(n2) operations. The weighted path
sum from node 0 to some node X in the graph is the sum
of the weighted path sums of all nodes with a transition
to X, multiplied by the weight of the transition edge.
Initializing the weighted path sum of node 0 to 1 and
performing this operation layer by layer gives the values
we need on the bottom nodes |0in.

Suppose now that we are given the survival amplitude
S(t), or can compute it through other means. By tak-
ing derivatives we can compute the moments µ0, . . . , µn.
From this data we can calculate the Lanczos coe�cients
by using the Markov chain described above. Specifi-
cally, suppose we have already calculated a0, . . . , ak�1

and b1, . . . , bk and the odd moment µ2k+1. There is a
unique path in the unwrapped Markov chain from node
0 to node 2k+1 that passes through an edge with weight
iak (example in Fig. 2). This follows because any path
from 0 to 2k+1 must follow precisely 2k+1 edges since
every step necessarily progresses one column to the right.
This means that no path can rise to a row higher than k
because the need to descend back to row 0 would make
the path too long. For the same reason, a path that
reaches row k must have precisely k upward diagonal and
k downward diagonal edges, allowing a single horizontal
edge in the path. The only way to have this edge in the
kth row is to start with k diagonal upward edges, then
go one step horizontally in the kth row and then descend
k steps diagonally.

By similar reasoning, the remaining paths between
nodes 0 and 2k+ 1 lie below the kth row and hence only
include edges with weights a0, . . . , ak�1, b1, . . . , bk. Thus
we can compute the path sum for trajectories from node
0 to node 2k+1 that do not go through edge with weight
iak, and subtract this sum from µ2k+1. The remainder is
the weight of the excluded path, namely i2k+1b2

1
. . . b2kak.

Since we know the bk’s by assumption, we may divide
them out, leaving us with ak.

Likewise, the even moments µ2k allow us to extract val-
ues of bk. The only path from node 0 to node 2k that goes
through an edge of weight ibk has path weight b2

1
. . . b2k

(example in Fig. 2). The weights of all the other paths
can be computed using only a0, . . . , ak and b1, . . . , bk�1.

To summarize, we can compute the Krylov basis and
Lanczos coe�cients e�ciently through the following al-
gorithm: (1) compute the survival amplitude, and use it
to extract the moments of the Hamiltonian in the initial
state, (2) apply the recursive algorithm above to system-
atically compute the Lanczos coe�cients to the desired
order. This procedure is potentially sensitive to the accu-
mulation of rounding error, due to the repeated divisions
needed to compute an and bn from their products. In
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Figure 2. Top: Except for the path in red, the weights of
every path from node 0 to node 3 can be computed with
knowledge just of a0 and b1. The weight of the red path can
be computed by subtracting the weights of every other path
from µ3, and can then be used to compute a1. Bottom:
Except for the path in red, the weights of every path from
node 0 to node 4 can be computed with knowledge just of a0,
a1, and b1. The weight of the red path can be computed by
subtracting the weights of every other path from µ4, and can
then be used to compute b2.

our numerical analyses we avoided this instability by us-
ing the mpmath [34] library to perform computations to
arbitrary precision.

C. Wave function and Complexity

Above, we described an algorithm for computing the
Krylov basis K and the associated Lanczos coe�cients
from the survival amplitude. To apply our definition of
state complexity to a time-evolving state we must expand
it in K as

| (t)i =
X

n

 n(t)|Kni , (25)

where unitarity requires
P

n | n(t)|2 ⌘
P

n pn(t) = 1.
Applying the Schrödinger equation (1) to this expression,
and then the Lanczos recursion in the form (19) gives

i@t n(t) = an n(t) + bn+1 n+1(t) + bn n�1(t) . (26)

The survival amplitude is simply the complex conjugate
of  0(t), see (21). Thus, given  0(t) = S(t)⇤ and the
Lanczos coe�cients, (26) defines an algebraic procedure

[Recursion Method: Viswanath,Muller ’63]
[Balasubramanian, PC, Magan, Wu ’22]
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III. COMPUTING SPREAD COMPLEXITY

Following Corollary 1, to calculate the spread complex-
ity we must derive the Krylov basis K. We can do this via
the Lanczos algorithm [13], which recursively applies the
Gram–Schmidt procedure to | ni = Hn| (0)i to gener-
ate an orthonormal basis K = {|Kni : n = 0, 1, 2, · · ·}:

|An+1i = (H � an)|Kni � bn|Kn�1i, |Kni = b�1

n |Ani .
(18)

The Lanczos coe�cients an and bn are defined as

an = hKn|H|Kni, bn = hAn|Ani1/2 , (19)

with b0 ⌘ 0 and |K0i = | (0)i being the initial state.
Observe that the Lanczos algorithm (18) implies that

H|Kni = an|Kni+ bn+1|Kn+1i+ bn|Kn�1i . (20)

This means that the Hamiltonian becomes a tri-diagonal
matrix in the Krylov basis. For finite-dimensional sys-
tems, this is known as the “Hessenberg form” of the
Hamiltonian.

A. Krylov basis from the Hessenberg form

Numerically stable algorithms for computing the Hes-
senberg form of a matrix, using Householder reflections
instead of the Gram-Schmidt procedure, are commonly
implemented in libraries like SciPy [32, 33] and Math-
ematica. There are two caveats. First, the “initial
state” used in these implementations is typically fixed at
(1, 0, 0, . . .)T . To start with an arbitrary initial state, we
must first perform a change of basis so that the desired
initial vector has those special coordinates. Second, the
o↵-diagonal values bn are sometimes negative in these im-
plementations. This amounts to a choice of phase in the
definition of the Krylov basis. Taking the absolute value
of all the o↵-diagonal elements solves this issue, and is
equivalent to multiplying some of the vectors of the new
basis by �1, which does not change the physics. From
the Hessenberg form of the Hamiltonian we can directly
read o↵ the Lanczos coe�cients: the an are the diagonal
elements, and the bn are the entries above the diagonal.
The wavefunction in the Krylov basis can be obtained by
exponentiating the Hessenberg form and applying to the
initial state. This procedure has the advantage of being
numerically stable.

B. Krylov basis from the survival amplitude

We can also devise a more general method for com-
puting the Lanczos coe�cients which remains valid for
infinite dimensional systems and the large N limit of fi-
nite dimensional systems. We start by showing how to
compute the Lanczos coe�cients from the “survival am-
plitude”, i.e., the amplitude that the state at time t is the
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Figure 1. Top: “Markov chain” representation of iH. Bot-
tom: “Unwrapping” of the Markov chain so that “time” goes
from left to right. In every vertical column of nodes, the bot-
tom node corresponds to |K0i, the first node above corre-
sponds to |K1i and so on. The sum of the weights of the blue
and red paths gives hK0| (iH)2 |K0i.

same as the state at time zero. Defining the expansion
of the evolving state in the Krylov basis as

| (t)i =
X

n

 n(t)|Kni , (21)

the survival amplitude is just

S(t) = h (t)| (0)i = h (0)|eiHt| (0)i =  0(t)
⇤ , (22)

where we recall that |K0i = | (0)i. The survival am-
plitude is also the moment-generating function for the
Hamiltonian in the initial state:

µn =
dn

dtn
S(t)

����
t=0

= h (0)| d
n

dtn
eiHt| (0)i

����
t=0

= hK0|(iH)n|K0i . (23)

The particular form of the action of the Hamiltonian
H in the Krylov basis (20) can be conveniently repre-
sented by an un-normalized “Markov chain” with transi-
tion weights given by the Lanczos coe�cients, as shown
in the upper panel of Fig. 1. The action of iH onP

n dn|Kni is then equivalent to the action of the chain
transition matrix on a chain state vector (d0, d1, · · · ).
If we start with the vector (1, 0, 0, · · · ) and iterate the
chain n times, the weight of the ith node will be the
weight of |Kii in the state (iH)n|K0i. Thus, after n iter-
ations of the chain, the weight of |K0i will be the moment
µn = hK0|(iH)n|K0i.
If we start with a state localized on |K0i, it is con-

venient to “unwrap” the Markov chain as shown in the
bottom panel of Fig. 1. In this representation, the nodes

S(t) ⌘ h (t)| (0)i = h 0|eiHt| 0i = �⇤
0(t)
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Knowing moments allows to find Lanczos coefficients (algorithm)

Inverse relations:

such that the return amplitude would be

S(s) = Tr
�
⇢1�is

A

�
= Z̃(1� is). (2.6)

Since Tr(⇢A) = 1 we have Z̃(1) = 1.

Interestingly, the relations between the moments and Lanczos coe�cients are

µ1 = ia0, µ2 = �a20 � b21, µ3 = �i(a30 + 2a0b
2
1 + a1b

2
1), ... (2.7)

They can be solved to give

a0 = �iµ1, b21 = µ2
1 � µ2, a1 = iµ1

✓
2�

µ2
1

b21

◆
+

iµ3

b21
. (2.8)

It will be useful to study some of the simple examples first.

2.1 Example I: Qubit

We can just consider a reduced density matrix with two eigenvalues p and 1�p with 0 < p < 1,

such that

Tr(⇢n) = pn + (1� p)n = Z(� = n). (2.9)

Then we have the return amplitude

S(s) = Z(1� is) = p1�is + (1� p)1�is =
1X

k=0

µk

sk

k!
, (2.10)

with moments

µk = (�i)k
�
p logk(p) + (1� p) logk(1� p)

�
. (2.11)

This way we have

a0 = �p log(p)� (1� p) log(1� p) = S1, (2.12)

and

b1 = ±

p
p(1� p) (log(1� p)� log(p)) , (2.13)

so if we want to make b1 > 0, we should take the sign depending on p > 1/2 or p < 1/2. For

p = 1/2, we have b1 = 0.

Interestingly, we can compute the quantity called capacity of entanglement defined as

CE(⇢) = lim
n!1

n2@2
2 log Tr (⇢

n) = p(1� p) (log(1� p)� log(p))2 . (2.14)

Clearly, we get the relation

CE(⇢) = b21. (2.15)
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Physics of Lanczos coeff? 

[Balasubramanian, Magan, Wu ’22]

a1 = i
µ3
1 � 2µ1µ2 + µ3

µ2
1 � µ2
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b22 =
µ3
2 + µ2

3 + µ2
1µ4 � 2µ1µ2µ3 � µ2µ4

(µ2
1 � µ2)2
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good candidate for a universal notion of complexity in in-
teracting quantum field theories. Nevertheless, its phys-
ical as well as the operational meaning remain mysteri-
ous. On the same footing, the relation to more estab-
lished notions of complexity is an open problem. On
the other hand, despite the relatively unambiguous def-
inition, computing Krylov complexity requires numerics
and understanding its universal features becomes very
complicated. These conceptual and technical drawbacks
are our main motivations to explore and develop it fur-
ther in this work.

To make progress, it will be fruitful to focus on certain
classes of chaotic models such as those appearing in the
context of the AdS/CFT correspondence [5], where, due
to conformal symmetry, many-body quantum states are
e�ciently described geometrically. Indeed, black holes in
holography are often seen as collection of qubits (the so-
called “central dogma”) described by Hamiltonians that
show signatures of maximal quantum chaos. The SYK
model [6, 16] described by two-dimensional Anti-de Sitter
(AdS2) gravity is the canonical modern example. More-
over, the quantum information “revolution” that started
with holographic entanglement entropy [35] and contin-
ues with holographic complexity [36–40] brought new in-
tuitions that allow us to connect seemingly unrelated
concepts from quantum information and computation to
geometry (see e.g. reviews [41, 42]). For instance, micro-
scopic measures of operator growth and complexity are
believed to encode subtle information about near horizon
geometries of black holes [22, 32, 43–50].

In this light, we develop a geometric approach to
Krylov complexity. Our work will explore the underlying
symmetries controlling the system dynamics, although
certain observations will be more general. We will be led
to the field of generalized coherent states and their as-
sociated information geometry. This geometrization will
clarify the definition of the operator complexity from a
physical standpoint. More concretely, we will find a pre-
cise interpretation of the Krylov complexity as a volume
in the information geometry. We will also find the rela-
tion between the symmetry algebra governing the opera-
tor growth and isometries of this geometry. At the same
time, we will see how this approach simplifies the techni-
cal analysis opening new avenues towards the computa-
tion of defining aspects of operator growth, such as Lanc-
zos coe�cients or Lyapunov exponents in various chaotic
and integrable setups. We also notice that the present
approach provides a new geometric take on an old field,
namely the Lanczos approach to non-equilibrium dynam-
ics, connecting it with the field of generalized coherent
states.

This article is organised as follows. In sec II we review
the Lanczos algorithm and its recent applications to max-
immally chaotic systems. In sec III we describe our main
idea that, for symmetry scenarios, the Liouvillian opera-
tor can be written in terms of algebra generators as a sum

of “ladder” operators. This naturally connects with gen-
eralized coherents states and their associated geometry.
In sec IV we illustrate these ideas in four canonical exam-
ples, SL(2,R) (or SU(1,1)), SU(2), Heisenberg-Weyl and
2d CFTs. As highlights, the Lanczos coe�ents for SYK,
first derived in [23] using involved techniques, will acquire
a simple and more transparent meaning, and we will de-
termine the geometric roles played by Krylov complexity
and the operator wavefunction. In sec V we arrive at
the Lanczos coe�cients in yet another way, by enforcing
the closure of the ladder operator algebra. In sec VI we
formulate operator dynamics in terms of a purely clas-
sical motion, allowing connections with classical chaos
and geometric approaches to complexity. In sec VII, us-
ing the two-mode representation of coherent states from
quantum optics, we introduce several quantum informa-
tion tools to probe operator growth: operator entangle-
ment/Renyi entropies, negativity, capacity, fidelity and
relative entropy. Finally, in sec VIII we discuss general-
izations of Krylov complexity in CFTs and relations to
known tools used in discussions of complexity and chaos.
Four appendices provide more technical details comple-
menting the discussion in the main part.
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in a given model. The operator can have more labels,
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where Õn are nested commutators of O with the Hamil-
tonian

Õ0 = O, Õ1 = [H,O], Õ2 = [H, [H,O]], ... (4)

Knowing the result of these commutators is equivalent
to solving the operator dynamics. Unfortunately, this is
rarely the case in generic physical systems.

Despite this technical obstruction, we would like to
have a notion of growth or complexity of the Heisenberg
operator as a function of time. Intuitively, if the Hamil-
tonian governing the dynamics is su�ciently “chaotic”,
even if we start from a “simple” operator O, the result
of these commutators will be given by increasingly com-
plex operators. In other words, the more “chaotic” the
Hamiltonian H, the faster the operator O will mix with
other operators of the theory. The main objective is then
to quantify such a mixing in a precise manner.

Lanczos Algorithm and Krylov Basis

In order to sharpen the previous intuitions it will be
useful to switch to a better suited formalism and define
the Liouvillian super-operator L (see e.g. [24]) as

L = [H, ·], O(t) ⌘ eiLtO, (5)

and by super-operator we just mean a linear map in the
space of operators of the theory. In this language, the
operators Õn in (3) are results of the repeated action of
the Liouvillian L on O such that Õn ⌘ LnO.

This view suggests interpreting (3) as an “operator’s
wavefunction”, and the Liouvillian L as a Hamiltonian in
the Schrodinger formulation. However, we cannot qual-
ify the coe�cients of tn associated with operators Õn as
“amplitudes”. One transparent reason is that the sum
of their modulus squared is not conserved in time. The
precise reason though is that to use the operator algebra
as a Hilbert space (in which we expand vectors unam-
biguously in an orthonormal basis), we need to introduce
an inner product. The choice of such an inner product
is one of the ambiguities (features) of this approach. In
this work, we will follow the most canonical one used in
the physics literature.

More concretely, associating |O) with the Hilbert space
vector corresponding to operator O, the following family
of inner products was described in [24]

(A|B)g
�
=

Z
�

0
g(�) he�HA†e��HBi� d�. (6)

In this formula, the bracket hi� denotes the thermal ex-
pectation value

hAi� =
1

Z
Tr

�
e��HA

�
, Z = Tr

�
e��H

�
. (7)

Also, for this definition to be a proper inner-product,
g(�) has to satisfy the following conditions

g(�) � 0, g(� � �) = g(�),
1

�

Z
�

0
d�g(�) = 1. (8)

In this work, following [23], we will mainly focus on the
Wightman inner product

(A|B) = heH�/2A†e�H�/2Bi� , (9)

which corresponds to g(�) = �(�� �/2). This is a phys-
ical choice that amounts to taking the expectation value
of the operators in the thermofield double state, with
operators A and B inserted in the two di↵erent copies.
In any case, once the dynamics is solved for one specific
choice of inner product, the behaviour associated with
other choices can be found (see e.g. App A in [22]).
Once we have chosen an inner product, the arbitrary

choice of basis in which to expand our evolving opera-
tor does not a↵ect the physics of the problem. However,
some choices are more convenient than others. Here we
will follow the Lanczos approach to non-equilibrium dy-
namics, which uses the canonical basis generated by the
|Õn). More precisely, starting from |Õn) and using the
Gram–Schmidt orthogonalization procedure we arrive at
an orthonormal basis, known as the Krylov basis |On).
In a certain precise sense, this is the “optimal” choice
since the operators |Õn) are the only ones appearing in
(3).
The Krylov basis is defined recursively using the fol-

lowing algorithm (also known as Lanczos algorithm). We
start by noticing that the first two operators in |Õn)
are always orthogonal with respect to the previous inner
products (6). Therefore we can directly include them in
our basis

|O0) := |Õ0) = |O), |O1) := b�1
1 L|Õ0), (10)

where b1 = (Õ0L|LÕ0)1/2 normalizes the vector. The
next states are constructed iteratively by first computing

|An) = L|On�1)� bn�1|On�2), (11)

and then normalizing

|On) = b�1
n

|An), bn = (An|An)
1/2. (12)

This way, we arrive at an orthonormal basis (On|Om) =
�n,m that has been generated by the set {LnO}. We can
now use it to expand any element of this set and the
evolving operator |O(t)). Notice that in addition to the
Krylov basis states |On), this algorithm yields the so-
called Lanczos coe�cients bn. Finding these coe�cients
for the system under consideration amounts to solving for
the dynamics and it is one of the technical challenges in
this approach, see [24]. Let us also point that the above
algorithm can be generalized to include diagonal terms
in the Liouvillian (see e.g. Appendix A).

Heisenberg evolution

Formally, we can write the operator as
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called Lanczos coe�cients bn. Finding these coe�cients
for the system under consideration amounts to solving for
the dynamics and it is one of the technical challenges in
this approach, see [24]. Let us also point that the above
algorithm can be generalized to include diagonal terms
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We should pick an inner product:
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series in t as

O(t) =
1X

n=0

(it)n

n!
Õn, (3)

where Õn are nested commutators of O with the Hamil-
tonian

Õ0 = O, Õ1 = [H,O], Õ2 = [H, [H,O]], ... (4)

Knowing the result of these commutators is equivalent
to solving the operator dynamics. Unfortunately, this is
rarely the case in generic physical systems.

Despite this technical obstruction, we would like to
have a notion of growth or complexity of the Heisenberg
operator as a function of time. Intuitively, if the Hamil-
tonian governing the dynamics is su�ciently “chaotic”,
even if we start from a “simple” operator O, the result
of these commutators will be given by increasingly com-
plex operators. In other words, the more “chaotic” the
Hamiltonian H, the faster the operator O will mix with
other operators of the theory. The main objective is then
to quantify such a mixing in a precise manner.

Lanczos Algorithm and Krylov Basis

In order to sharpen the previous intuitions it will be
useful to switch to a better suited formalism and define
the Liouvillian super-operator L (see e.g. [24]) as

L = [H, ·], O(t) ⌘ eiLtO, (5)

and by super-operator we just mean a linear map in the
space of operators of the theory. In this language, the
operators Õn in (3) are results of the repeated action of
the Liouvillian L on O such that Õn ⌘ LnO.

This view suggests interpreting (3) as an “operator’s
wavefunction”, and the Liouvillian L as a Hamiltonian in
the Schrodinger formulation. However, we cannot qual-
ify the coe�cients of tn associated with operators Õn as
“amplitudes”. One transparent reason is that the sum
of their modulus squared is not conserved in time. The
precise reason though is that to use the operator algebra
as a Hilbert space (in which we expand vectors unam-
biguously in an orthonormal basis), we need to introduce
an inner product. The choice of such an inner product
is one of the ambiguities (features) of this approach. In
this work, we will follow the most canonical one used in
the physics literature.

More concretely, associating |O) with the Hilbert space
vector corresponding to operator O, the following family
of inner products was described in [24]

(A|B)g
�
=

Z
�

0
g(�) he�HA†e��HBi� d�. (6)

In this formula, the bracket hi� denotes the thermal ex-
pectation value

hAi� =
1

Z
Tr
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e��HA
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, Z = Tr

�
e��H

�
. (7)

Also, for this definition to be a proper inner-product,
g(�) has to satisfy the following conditions

g(�) � 0, g(� � �) = g(�),
1

�

Z
�

0
d�g(�) = 1. (8)

In this work, following [23], we will mainly focus on the
Wightman inner product

(A|B) = heH�/2A†e�H�/2Bi� , (9)

which corresponds to g(�) = �(�� �/2). This is a phys-
ical choice that amounts to taking the expectation value
of the operators in the thermofield double state, with
operators A and B inserted in the two di↵erent copies.
In any case, once the dynamics is solved for one specific
choice of inner product, the behaviour associated with
other choices can be found (see e.g. App A in [22]).
Once we have chosen an inner product, the arbitrary

choice of basis in which to expand our evolving opera-
tor does not a↵ect the physics of the problem. However,
some choices are more convenient than others. Here we
will follow the Lanczos approach to non-equilibrium dy-
namics, which uses the canonical basis generated by the
|Õn). More precisely, starting from |Õn) and using the
Gram–Schmidt orthogonalization procedure we arrive at
an orthonormal basis, known as the Krylov basis |On).
In a certain precise sense, this is the “optimal” choice
since the operators |Õn) are the only ones appearing in
(3).
The Krylov basis is defined recursively using the fol-

lowing algorithm (also known as Lanczos algorithm). We
start by noticing that the first two operators in |Õn)
are always orthogonal with respect to the previous inner
products (6). Therefore we can directly include them in
our basis

|O0) := |Õ0) = |O), |O1) := b�1
1 L|Õ0), (10)

where b1 = (Õ0L|LÕ0)1/2 normalizes the vector. The
next states are constructed iteratively by first computing

|An) = L|On�1)� bn�1|On�2), (11)

and then normalizing

|On) = b�1
n

|An), bn = (An|An)
1/2. (12)

This way, we arrive at an orthonormal basis (On|Om) =
�n,m that has been generated by the set {LnO}. We can
now use it to expand any element of this set and the
evolving operator |O(t)). Notice that in addition to the
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since the operators |Õn) are the only ones appearing in
(3).
The Krylov basis is defined recursively using the fol-

lowing algorithm (also known as Lanczos algorithm). We
start by noticing that the first two operators in |Õn)
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Gram–Schmidt orthogonalization procedure we arrive at
an orthonormal basis, known as the Krylov basis |On).
In a certain precise sense, this is the “optimal” choice
since the operators |Õn) are the only ones appearing in
(3).
The Krylov basis is defined recursively using the fol-

lowing algorithm (also known as Lanczos algorithm). We
start by noticing that the first two operators in |Õn)
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tor does not a↵ect the physics of the problem. However,
some choices are more convenient than others. Here we
will follow the Lanczos approach to non-equilibrium dy-
namics, which uses the canonical basis generated by the
|Õn). More precisely, starting from |Õn) and using the
Gram–Schmidt orthogonalization procedure we arrive at
an orthonormal basis, known as the Krylov basis |On).
In a certain precise sense, this is the “optimal” choice
since the operators |Õn) are the only ones appearing in
(3).
The Krylov basis is defined recursively using the fol-

lowing algorithm (also known as Lanczos algorithm). We
start by noticing that the first two operators in |Õn)
are always orthogonal with respect to the previous inner
products (6). Therefore we can directly include them in
our basis

|O0) := |Õ0) = |O), |O1) := b�1
1 L|Õ0), (10)

where b1 = (Õ0L|LÕ0)1/2 normalizes the vector. The
next states are constructed iteratively by first computing

|An) = L|On�1)� bn�1|On�2), (11)

and then normalizing

|On) = b�1
n

|An), bn = (An|An)
1/2. (12)

This way, we arrive at an orthonormal basis (On|Om) =
�n,m that has been generated by the set {LnO}. We can
now use it to expand any element of this set and the
evolving operator |O(t)). Notice that in addition to the

Then we follow the Lanczos algorithm.

|O(t)) = eiLt
|O) ⌘

X

n

in'n(t)|On)
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We now expand the time-dependent operator in the
Krylov basis as

|O(t)) =
X

n

in'n(t)|On) . (13)

In this expansion, the amplitudes 'n(t) turn out to be
real. Generally, their modulus squared defines probabil-
ities whose sum is conserved in time

X

n

|'n(t)|2 ⌘
X

n

pn(t) = 1. (14)

These amplitudes are determined by solving a
“Schrodinger equation”, that descends from the original
Heisenberg equation satisfied by O(t). To derive this
equation, notice that the previously defined Liouvillian
L plays the role of the Hamiltonian in the new Hilbert
space spanned by the Krylov basis |On). In particular,
the state representing O(t) is given by

|O(t)) = eiLt|O). (15)

Computing the time derivative

@t|O(t)) = iL|O(t)), (16)

or equivalently, using (13) we arrive at

@t|O(t)) =
X

n

in@t'n(t)|On). (17)

Next, from the Lanczos algorithm (11), we find the action
of the Liouvillian on the Krylov basis vectors

L|On) = bn|On�1) + bn+1|On+1). (18)

From this expression it is clear that the Liovillian is tridi-
agonal in the Krylov basis (generally we may have a di-
agonal term in (18)). This fact will play an important
role in the following sections. Applying this to (16) and
shifting the summation appropriately, we derive

@t|O(t)) =
X

n

in (bn'n�1(t)� bn+1'n+1(t)) |On). (19)

Comparing the coe�cients of (17) and (19), we arrive at
the discrete Schrodinger equation determining the time
evolution of the amplitudes 'n(t)

@t'n(t) = bn'n�1(t)� bn+1'n+1(t) . (20)

With this equation, once we derive the Lanczos coe�-
cients bn, we can solve for the amplitudes 'n(t) with
initial condition 'n(0) = �n0 and determine the opera-
tor wavefunction (13). The operator’s wavefunction then
completely determines the growth of the operator that,
as we will describe below, can be measured using tools of
quantum mechanics, quantum information, or quantum
complexity.

Before we discuss operator’s complexity, we note that
a very special role in the Krylov approach is played by
the so-called auto-correlation function

C(t) ⌘ (O(t)|O) = '0(t) . (21)

Indeed, as reviewed in [23], starting from C(t) and/or its
appropriate transforms we can obtain the Lanczos coe�-
cients bn and operator wavefunction. In this work, it will
be more instructive to develop our physical understand-
ing of the Liouvillian instead. This will allow us to easily
extract both C(t) and bn.

Krylov Complexity

We now describe how to quantify operator complex-
ity in this framework. Using physical intuition, we can
first interpret the dynamics in equation (20) as that of
a particle moving on a one-dimensional chain, where the
sites with label n are in one-to-one correspondence with
the Krylov basis vectors (see also [29] for a Toda chain
perspective). This suggests a natural measure of opera-
tor complexity, dubbed Krylov complexity [23], defined
to be the average position in the chain

KO ⌘
X

n

n pn(t) =
X

n

n |'n(t)|2 . (22)

Formally, this quantity can be written as the expectation
value in the evolving state |O(t)) of the following “Krylov
complexity operator”

K̂O =
X

n

n|On)(On| , (23)

such that Krylov complexity reads

KO = (O(t)|K̂O|O(t)) . (24)

Intuitively, this position operator (23) in the chain can
also be interpreted as a “number operator”. Unlike the
Liouvillian, it is diagonal in the Krylov basis.
Clearly, as with the choice of the inner product, there

is a certain ambiguity in this definition of operator com-
plexity. Indeed, several definitions of operator complex-
ities that have appeared in the literature can always be
written in such a way, see [22, 23]. However, as we will
see in this work, this “minimal” choice acquires a simple
geometric interpretation.
The recent interest in the Krylov approach to opera-

tor complexity has various origins. First, modulo simple
physical assumptions, it is a well defined and concrete ap-
proach, potentially applicable to QFTs. These features
make it appealing from the point of view of holography.
Second, based on various explicit numerical as well as
analytical examples, [23] conjectured a maximal possi-
ble growth of Lanczos coe�cients in quantum systems,
namely a linear growth:

bn  ↵n+ � +O(1), (25)

Lanczos coefficients are encoded in the return amplitude

Schrödinger equation:

S(t) = (O0|O(t)) =
�
O0|e

iLt
|O0

�
= '0(t)
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Krylov Basis Summary

Connections:

| (t)i = O(�t) | (0)i
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[46], recent literature [47–61] has mainly focused on the
Wightman inner product

(A|B) = heH�/2A†e�H�/2Bi� , (49)

which corresponds to setting g(�) = �(� � �/2) in (40).
With this choice, Krylov complexity in chaotic systems
grows exponentially fast [46], displaying a Lyapunov ex-
ponent that turns out to coincide with the maximal al-
lowed value as defined by out-of-time-ordered correlators
[62]. From the present perspective, this choice of in-
ner product measures the quantum state complexity of

| (t)i = ⇢1/4� OL(t)⇢
�1/4
� | �i, where we remind that | �i

represents the TFD state.
But this Wightman inner product choice is arbitrary

and calls for a deeper understanding. In fact, [50] showed
that di↵erent choices of inner product can be related to
each other in a simple manner, but that Krylov complex-
ity behaves di↵erently with respect to each choice. Fol-
lowing the philosophy of the present paper, we could fur-
ther minimize Krylov complexity over the choice of inner
product (40). Although we have not performed this min-
imization, Ref. [50] actually shows that the Wightman
inner product (49) corresponds to the slowest growth of
Krylov complexity.

Summarizing, the correct Lyapunov exponent arises
precisely after minimizing over all possible choices of the
ambiguous inner product, and over all choices of basis.
This gives further support to our guiding principle that
complexity should be defined via a minimization over the
possible ambiguous choices.

V. ANALYTICAL MODELS

We will consider a class of models in which our notion
of quantum state complexity can be computed analyti-
cally by exploiting techniques developed recently in the
context of operator complexity [55]. Suppose that the
Hamiltonian belongs to the Lie algebra of a symmetry
group:

H = ↵ (L+ + L�) + �L0 + � 1 , (50)

where L+ and L� are raising and lowering ladder opera-
tors, and L0 belongs to the Cartan subalgebra of the Lie
algebra (see [63] for examples of such theories). The iden-
tity term contributes to a phase to the time evolution and
so does not a↵ect the associated quantum complexity.
But it can be used to set the ground state energy. The
coe�cients ↵ and � are model-dependent; their meaning
will become clearer in the specific examples.

Comparing with the action of the Hamiltonian in the
Krylov basis (19), namely

H|Kni = an|Kni+ bn+1|Kn+1i+ bn|Kn�1i , (51)

we see that, if the initial state is a highest weight state,
the Krylov basis states furnish a representation of the

symmetry group. In other words, Eq. (51), which pro-
vides a solution to the Lanczos recursion method by
putting the Hamilton in tridiagonal form, also guaran-
tees that the Krylov basis states form a representation of
the symmetry. Moreover, since the action of the ladder
operators and the elements of the Cartan subalgebra are
fixed by symmetry, we can read o↵ the Lanczos coe�-
cients immediately

↵L+|Kni = bn+1|Kn+1i,
↵L�|Kni = bn|Kn�1i,
�L0|Kni = an|Kni . (52)

Unitary evolution with the Hamiltonian (50) acting on a
highest weight state is determined, up to the irrelevant
phase �, by a generalized Lie group displacement operator
D(⇠, ⇠0)

D(⇠) ⌘ e⇠L+�⇠̄L�+ ⇠0L0 , (53)

for ⇠ = �i↵t, its conjugate ⇠̄, and ⇠0 = �i�t. When
⇠0 = 0 this is a conventional displacement operator
[64, 65]. Thus, we can understand the action of the
Hamiltonian as producing generalized coherent states.
The amplitudes  n(t) of the time-evolved state in the
Krylov basis |Kni are obtained by expanding these states
in an orthonormal basis. The link with coherent states
allows us to geometrize the notion of complexity follow-
ing [55, 57].
Below we study motion on SL(2,R), SU(2) and the

Heisenberg-Weyl group. We will see that the an coe�-
cients can dramatically change state complexity growth.
For example, suppose the bn grow linearly with n. Then
systems with di↵erent an can have have very di↵erent
complexity growth patterns such as quadratic or peri-
odic. In fact, systems with bn ⇠ n and an = 0 will have
exponentially growing complexity, as we see by analogy
with the operator growth analysis in [46].

A. A particle moving in SL(2,R)

We start with SL(2,R), a group previously studied in
the context of operator growth in the SYK model [55].
Here we will realize it as the symmetry controlling time
evolution of the TFD state of the harmonic oscillator.
Consider a family of Hamiltonians

H = ↵(L�1 + L1) + �L0 + � 1 , (54)

where the generators satisfy the SL(2,R) algebra

[L0, L±1] = ⌥L±1, [L1, L�1] = 2L0 . (55)

In the discrete series representation associated with scal-
ing dimension h, the generators act as

L0 |h, ni = (h+ n) |h, ni ,
L�1 |h, ni =

p
(n+ 1)(2h+ n) |h, n+ 1i ,

L1 |h, ni =
p

n(2h+ n� 1) |h, n� 1i . (56)

States Operators

E.g. Wightman 

| (t)i = e�iHt | 0i =
X

n

�n(t) |Kni
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|O(t)) = eiLt
|O) ⌘

X

n

in'n(t)|On)
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We now expand the time-dependent operator in the
Krylov basis as

|O(t)) =
X

n

in'n(t)|On) . (13)

In this expansion, the amplitudes 'n(t) turn out to be
real. Generally, their modulus squared defines probabil-
ities whose sum is conserved in time

X

n

|'n(t)|2 ⌘
X

n

pn(t) = 1. (14)

These amplitudes are determined by solving a
“Schrodinger equation”, that descends from the original
Heisenberg equation satisfied by O(t). To derive this
equation, notice that the previously defined Liouvillian
L plays the role of the Hamiltonian in the new Hilbert
space spanned by the Krylov basis |On). In particular,
the state representing O(t) is given by

|O(t)) = eiLt|O). (15)

Computing the time derivative

@t|O(t)) = iL|O(t)), (16)

or equivalently, using (13) we arrive at

@t|O(t)) =
X

n

in@t'n(t)|On). (17)

Next, from the Lanczos algorithm (11), we find the action
of the Liouvillian on the Krylov basis vectors

L|On) = bn|On�1) + bn+1|On+1). (18)

From this expression it is clear that the Liovillian is tridi-
agonal in the Krylov basis (generally we may have a di-
agonal term in (18)). This fact will play an important
role in the following sections. Applying this to (16) and
shifting the summation appropriately, we derive

@t|O(t)) =
X

n

in (bn'n�1(t)� bn+1'n+1(t)) |On). (19)

Comparing the coe�cients of (17) and (19), we arrive at
the discrete Schrodinger equation determining the time
evolution of the amplitudes 'n(t)

@t'n(t) = bn'n�1(t)� bn+1'n+1(t) . (20)

With this equation, once we derive the Lanczos coe�-
cients bn, we can solve for the amplitudes 'n(t) with
initial condition 'n(0) = �n0 and determine the opera-
tor wavefunction (13). The operator’s wavefunction then
completely determines the growth of the operator that,
as we will describe below, can be measured using tools of
quantum mechanics, quantum information, or quantum
complexity.

Before we discuss operator’s complexity, we note that
a very special role in the Krylov approach is played by
the so-called auto-correlation function

C(t) ⌘ (O(t)|O) = '0(t) . (21)

Indeed, as reviewed in [23], starting from C(t) and/or its
appropriate transforms we can obtain the Lanczos coe�-
cients bn and operator wavefunction. In this work, it will
be more instructive to develop our physical understand-
ing of the Liouvillian instead. This will allow us to easily
extract both C(t) and bn.

Krylov Complexity

We now describe how to quantify operator complex-
ity in this framework. Using physical intuition, we can
first interpret the dynamics in equation (20) as that of
a particle moving on a one-dimensional chain, where the
sites with label n are in one-to-one correspondence with
the Krylov basis vectors (see also [29] for a Toda chain
perspective). This suggests a natural measure of opera-
tor complexity, dubbed Krylov complexity [23], defined
to be the average position in the chain

KO ⌘
X

n

n pn(t) =
X

n

n |'n(t)|2 . (22)

Formally, this quantity can be written as the expectation
value in the evolving state |O(t)) of the following “Krylov
complexity operator”

K̂O =
X

n

n|On)(On| , (23)

such that Krylov complexity reads

KO = (O(t)|K̂O|O(t)) . (24)

Intuitively, this position operator (23) in the chain can
also be interpreted as a “number operator”. Unlike the
Liouvillian, it is diagonal in the Krylov basis.
Clearly, as with the choice of the inner product, there

is a certain ambiguity in this definition of operator com-
plexity. Indeed, several definitions of operator complex-
ities that have appeared in the literature can always be
written in such a way, see [22, 23]. However, as we will
see in this work, this “minimal” choice acquires a simple
geometric interpretation.
The recent interest in the Krylov approach to opera-

tor complexity has various origins. First, modulo simple
physical assumptions, it is a well defined and concrete ap-
proach, potentially applicable to QFTs. These features
make it appealing from the point of view of holography.
Second, based on various explicit numerical as well as
analytical examples, [23] conjectured a maximal possi-
ble growth of Lanczos coe�cients in quantum systems,
namely a linear growth:

bn  ↵n+ � +O(1), (25)

X

n

|�n(t)|2 ⌘
X

n

pn = 1

<latexit sha1_base64="XC3Msz6Aw5NLKhLshiwukaoTIqw=">AAACD3icbVDLSsNAFJ34rPUVdelmsCh1U5JS0Y1QdOOygn1AE8NkOmmHTiZxZlIoaf/Ajb/ixoUibt2682+ctllo64ELh3Pu5d57/JhRqSzr21haXlldW89t5De3tnd2zb39howSgUkdRywSLR9JwigndUUVI61YEBT6jDT9/vXEbw6IkDTid2oYEzdEXU4DipHSkmeeODIJPT5y4h71eFGdju7LDnlI6ADOHBh7/NL2zIJVsqaAi8TOSAFkqHnml9OJcBISrjBDUrZtK1ZuioSimJFx3kkkiRHuoy5pa8pRSKSbTv8Zw2OtdGAQCV1cwan6eyJFoZTD0NedIVI9Oe9NxP+8dqKCCzelPE4U4Xi2KEgYVBGchAM7VBCs2FAThAXVt0LcQwJhpSPM6xDs+ZcXSaNcsiuls9tKoXqVxZEDh+AIFIENzkEV3IAaqAMMHsEzeAVvxpPxYrwbH7PWJSObOQB/YHz+AIgInFM=</latexit>

S(t) ⌘ h (t)| (0)i = h 0|eiHt| 0i = �⇤
0(t)

<latexit sha1_base64="7LU7K8a9dyoMTqFVNtPaTLXwXkE="></latexit>

X

n

|'n(t)|2 ⌘
X

n

pn = 1

<latexit sha1_base64="RhSpV9x36IjLMiv2BQ68KC+ot6U=">AAACEnicbVDLSsNAFJ34rPUVdelmsAjtpiSlohuh6MZlBfuAJobJdNIOnUzizKRQ0n6DG3/FjQtF3Lpy5984bbPQ1gMXDufcy733+DGjUlnWt7Gyura+sZnbym/v7O7tmweHTRklApMGjlgk2j6ShFFOGooqRtqxICj0GWn5g+up3xoSIWnE79QoJm6IepwGFCOlJc8sOTIJPQ7HzhCJuE89XlSl8X3FIQ8JHWZm7PFL2zMLVtmaAS4TOyMFkKHumV9ON8JJSLjCDEnZsa1YuSkSimJGJnknkSRGeIB6pKMpRyGRbjp7aQJPtdKFQSR0cQVn6u+JFIVSjkJfd4ZI9eWiNxX/8zqJCi7clPI4UYTj+aIgYVBFcJoP7FJBsGIjTRAWVN8KcR8JhJVOMa9DsBdfXibNStmuls9uq4XaVRZHDhyDE1AENjgHNXAD6qABMHgEz+AVvBlPxovxbnzMW1eMbOYI/IHx+QMW3Z26</latexit>
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Krylov/Spread Complexity

The physics of the growth/evolution <=> motion of a particle on a chain

We now quantify this idea precisely. This is done by
applying the Lanczos algorithm, which iteratively com-
putes a tridiagonal representation of a matrix. The idea is to
find the sequence fLnjOÞg and then apply Gram-Schmidt
to orthogonalize. Explicitly, start with a normalized vector
jO0Þ ≔ jOÞ. As a base case, let jO1Þ ≔ b−11 LjO0Þ, where
b1 ≔ ðO0LjLO0Þ1=2. Then inductively define

jAnÞ ≔ LjOn−1Þ − bn−1jOn−2Þ;
bn ≔ ðAnjAnÞ1=2;

jOnÞ ≔ b−1n jAnÞ: ð4Þ

The output of the algorithm is a sequence of positive
numbers, fbng, called the Lanczos coefficients, and an
orthonormal sequence of operators, fjOnÞg, called the
Krylov basis. [This is a bit of a misnomer, as the Krylov
basis spans an operator space containing OðtÞ for any t but
does not usually span the full space of operators.] The
Liouvillian is tridiagonal in this basis:

Lnm ≔ ðOnjLjOmÞ ¼

0

BBBBBBBB@

0 b1 0 0 $ $ $
b1 0 b2 0 $ $ $
0 b2 0 b3 $ $ $

0 0 b3 0 . .
.

..

. ..
. ..

. . .
. . .

.

1

CCCCCCCCA

: ð5Þ

We make four remarks. First, if the operator Hilbert
space is d-dimensional with d finite [or if the subspace

spanned by jO0Þ; jO1Þ; jO2Þ;… is so], the algorithm halts
at n ¼ dþ 1: In this work, we work always in the
thermodynamic limit and discard this nongeneric situation.
Second, the Lanczos algorithm presented here is adapted to
operator dynamics. Generally, a tridiagonal matrix will
have nonzero diagonal entries, but they vanish in Eq. (5),
because one can inductively show that inOn is Hermitian
for all n, and, hence, ðOnjLjOnÞ ¼ 0. Third, the knowledge
of the Lanczos coefficients b1;…; bn is equivalent to that of
the moments μ2; μ4;…; μ2n, defined as the Taylor series
coefficients of the correlation function

μ2n ≔ ðOjL2njOÞ ¼ d2n

dt2n
CðtÞjt¼0: ð6Þ

The nontrivial transformation between the Lanczos coef-
ficients and the moments is reviewed in the Appendix A.
Fourth, the Lanczos coefficients have units of energy.
In the Krylov basis, the correlation function CðtÞ is

CðtÞ ¼ ðeiLtÞ00: ð7Þ

Hence, the autocorrelation depends only on the Lanczos
coefficients and not on the Krylov basis. One way to
interpret the Lanczos coefficients, which we employ
extensively below, is as the hopping amplitudes of a
semi-infinite tight-binding model—see Fig. 1. The wave
function on the semi-infinite chain is defined as
φnðtÞ ≔ i−nðOnjOðtÞÞ. Heisenberg evolution of OðtÞ
becomes a discrete Schrödinger equation:

∂tφn ¼ −bnþ1φnþ1 þ bnφn−1; φnð0Þ ¼ δn0; ð8Þ

where b0 ¼ φ−1 ¼ 0 by convention. The autocorrelation
is simply CðtÞ ¼ φ0ðtÞ, so the Lanczos coefficients are
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Just as different bases are well suited for particular

computations, a number of equivalent representations of the
autocorrelation function appear in this work, namely, the
Green’s function

GðzÞ ¼
!
O
""""

1

z − L

""""O
#

¼ i
Z

∞

0
e−iztCðtÞdt ð9Þ

and the spectral function

ΦðωÞ ¼
Z

∞

−∞
CðtÞe−iωtdt: ð10Þ

In summary, we have reviewed five equivalent ways to
describe the dynamics

CðtÞ ↔ GðzÞ ↔ ΦðωÞ ↔ fμ2ng ↔ fbng: ð11Þ

Just as with a choice of basis, we use the most convenient
representation for the task at hand and translate freely

FIG. 1. Artist’s impression of the space of operators and its
relation to the 1D chain defined by the Lanczos algorithm starting
from a simple operator O. The region of complex operators
corresponds to that of largen on the1Dchain.Under our hypothesis,
the hopping amplitudes bn on the chain grow linearly asymptoti-
cally in generic thermalizing systems (with a log correction in one
dimension; see Sec. IV C). This implies an exponential spreading
ðnÞt ∼ e2αt of the wave function φn on the 1D chain, which reflects
the exponential growth of operator complexity under Heisenberg
evolution, in a sense that wemake precise in Sec. V. The form of the
wave function φn is only a sketch; see Fig. 5 for a realistic picture.
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The further in the chain the particle is, the more “complex” state in the Krylov 
basis needs to be employed (to represent the state or the operator)

A natural definition of “complexity” as an average position on the chain:

[Parker, Cao, Avdoshkin, Scaffidi, Altman ’19]
[Balasubramanian, PC, Magan, Wu ’22]
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Comment: Complexity?
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II. DEFINING COMPLEXITY

Consider a quantum system with a time-independent
Hamiltonian H. Time evolution of a state | (t)i is gov-
erned by the Schrödinger equation

i@t| (t)i = H| (t)i . (1)

The solution | (t)i = e�iHt| (0)i has a formal power
series expansion

| (t)i =
1X

n=0

(�it)n

n!
| ni , (2)

where | ni = Hn| (0)i. The Gram–Schmidt procedure
applied to | ni generates an ordered, orthonormal basis
K = {|Kni : n = 0, 1, 2, · · ·} for the part of the Hilbert
space explored by time development of | (0)i ⌘ |K0i.
The basis K, sometimes called the Krylov basis in the
recent literature, may have fewer elements than the di-
mension of the Hilbert space, depending on the dynamics
and the choice of initial state.

We expect more complex time evolution will spread
| (t)i more widely over the Hilbert space relative to the
initial state | i. To quantify this idea, we define a cost
function relative to a complete, orthonormal, ordered ba-
sis, B = {|Bni : n = 0, 1, 2, · · ·} for the Hilbert space

CB(t) =
X

n

cn|h (t)|Bni|2 ⌘
X

n

cn pB(n, t) , (3)

where the cn are a positive, increasing sequence of real
numbers, and the pB(n, t) are probabilities of being in
each basis vector. Completeness of the basis B, to-
gether with the unitarity of time evolution, namelyP

n pB(n, t) = 1, implies that the cost of a wavefunction
increases if it spreads deeper into the basis. We will gen-
erally take cn = n so that the cost measures the average
depth in the basis of the support of | (t)i.

We could try to define a natural notion of complexity
as the minimum of this cost function over all bases B

C(t) = min
B

CB(t) . (4)

At a time t0, any basis with |B0i = | (t0)i will minimize
(4), achieving C(t0) = c0. We will show that, under
some assumptions, there is an essentially unique basis
minimizing (4) across a finite time domain.

To this end, let C(m)

B
⌘ C(m)

B
(0) = dmCB(t)/dtm|t=0,

and suppose that the cost functions for bases B1 and
B2 have convergent Taylor expansions over 0  t  T .

Then, if there is a k such that C(m)

B1
= C(m)

B2
for m < k

and C(m)

B1
< C(m)

B2
for m = k, then CB1(t) < CB2(t) in a

domain 0  t  ⌧ for some ⌧ < T . We want to find the
basis that minimizes the cost in this sense in the vicinity
of t = 0. We can formalize this condition in terms of the
sequence of derivatives of the cost function at t = 0:

SB =
⇣
C(0)

B
, C(1)

B
, C(2)

B
, · · ·

⌘
. (5)

We write SB1 < SB2 if there is some k such that C(m)

B1
=

C(m)

B2
for m < k and C(m)

B1
< C(m)

B2
for m = k.

In what follows, we say that an ordered basis B is a
complete Krylov basis Kc if its initial elements are the
Krylov basis in the correct order. In more detail, say
the Krylov basis has K vectors. K might be smaller
than the Hilbert space dimension, so in such cases the
usual Krylov basis does not span the full Hilbert space.
We call B a complete Krylov basis if |Bni = |Kni, for
n = 0, · · · ,K � 1. The rest of the basis is unspecified
for the concerns of this definition. This defines a class
of bases for which the number of unspecified elements is
the dimension of the Hilbert space minus the dimension
of the Krylov basis. We will prove that any complete
Krylov basis Kc, as defined above, minimizes the deriva-
tive sequence S and hence has a lower cost than any other
basis, at least in the vicinity of t = 0.

Theorem 1 For any basis B, SK  SB, with equality
only for the complete Krylov bases B = Kc.

Proof: We will prove the theorem by induction by
showing that any orthonormal basis B whose first N el-
ements coincide with the Krylov basis satisfies SB < SB0

for all bases B0 whose first N elements do not coincide
with K.

The first element of the Krylov basis is |K0i = | (0)i.
Suppose now that the first element of B is |B0i = | 0i.
Then the cost is C(0)

B1
= CB(0) =

P
n cn|h (0)|Bni|2 = c0

because |Bi>0i are orthogonal to | (0)i. Any basis B0

which does not include | 0i as its first element will have
a higher cost, because, from (3) it will be a weighted
average of cn�0, and hence be larger than c0 since cn
increases with n.

To prove the induction step we must evaluate time

derivatives of the cost C(m)

B
(t) = dmCB(t)/dtm. Apply-

ing the derivatives to the right side of (3) and using (1)

gives C(m)

B
(0) =

P
n cnp

(m)

B
(n, 0), where

p(m)

B
(n, t) =

dm pB(n, t)

dtm
= (6)

im
mX

k=0

(�1)k
✓
m

k

◆
h (t)|Hm�k |Bni hBn|Hk | (t)i .

Now, let us assume that the firstN elements of B coincide
with the first N elements of K, i.e. |Bii = |Kii for i =

0, 1, · · ·N�1. Following (7), this means that p(m)

B
(n, t) =

p(m)

K
(n, t) for basis elements n < N and all derivatives m.

To complete the proof we need two lemmas.

Lemma 1: Suppose the first N elements B are the first

N elements of K, up to a phase factor. Then p(m)

B
(n, 0) =

0 for n � N,m < 2N .

Proof: For k < N , Hk | (0)i is a linear combination
of |B0i , . . . , |BN�1i, since these vectors equal the first N
elements of the Krylov basis. Orthogonality of the basis
B then implies that h (0)|Hk |Bni = hBn|Hk | (0)i = 0
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average of cn�0, and hence be larger than c0 since cn
increases with n.

To prove the induction step we must evaluate time

derivatives of the cost C(m)

B
(t) = dmCB(t)/dtm. Apply-

ing the derivatives to the right side of (3) and using (1)

gives C(m)

B
(0) =

P
n cnp

(m)

B
(n, 0), where

p(m)

B
(n, t) =

dm pB(n, t)

dtm
= (6)

im
mX

k=0

(�1)k
✓
m

k

◆
h (t)|Hm�k |Bni hBn|Hk | (t)i .

Now, let us assume that the firstN elements of B coincide
with the first N elements of K, i.e. |Bii = |Kii for i =

0, 1, · · ·N�1. Following (7), this means that p(m)

B
(n, t) =

p(m)

K
(n, t) for basis elements n < N and all derivatives m.

To complete the proof we need two lemmas.

Lemma 1: Suppose the first N elements B are the first

N elements of K, up to a phase factor. Then p(m)

B
(n, 0) =

0 for n � N,m < 2N .

Proof: For k < N , Hk | (0)i is a linear combination
of |B0i , . . . , |BN�1i, since these vectors equal the first N
elements of the Krylov basis. Orthogonality of the basis
B then implies that h (0)|Hk |Bni = hBn|Hk | (0)i = 0

Take a basis: 

2

II. DEFINING COMPLEXITY

Consider a quantum system with a time-independent
Hamiltonian H. Time evolution of a state | (t)i is gov-
erned by the Schrödinger equation

i@t| (t)i = H| (t)i . (1)

The solution | (t)i = e�iHt| (0)i has a formal power
series expansion

| (t)i =
1X

n=0

(�it)n

n!
| ni , (2)

where | ni = Hn| (0)i. The Gram–Schmidt procedure
applied to | ni generates an ordered, orthonormal basis
K = {|Kni : n = 0, 1, 2, · · ·} for the part of the Hilbert
space explored by time development of | (0)i ⌘ |K0i.
The basis K, sometimes called the Krylov basis in the
recent literature, may have fewer elements than the di-
mension of the Hilbert space, depending on the dynamics
and the choice of initial state.

We expect more complex time evolution will spread
| (t)i more widely over the Hilbert space relative to the
initial state | i. To quantify this idea, we define a cost
function relative to a complete, orthonormal, ordered ba-
sis, B = {|Bni : n = 0, 1, 2, · · ·} for the Hilbert space

CB(t) =
X

n

cn|h (t)|Bni|2 ⌘
X

n

cn pB(n, t) , (3)

where the cn are a positive, increasing sequence of real
numbers, and the pB(n, t) are probabilities of being in
each basis vector. Completeness of the basis B, to-
gether with the unitarity of time evolution, namelyP

n pB(n, t) = 1, implies that the cost of a wavefunction
increases if it spreads deeper into the basis. We will gen-
erally take cn = n so that the cost measures the average
depth in the basis of the support of | (t)i.

We could try to define a natural notion of complexity
as the minimum of this cost function over all bases B

C(t) = min
B

CB(t) . (4)

At a time t0, any basis with |B0i = | (t0)i will minimize
(4), achieving C(t0) = c0. We will show that, under
some assumptions, there is an essentially unique basis
minimizing (4) across a finite time domain.

To this end, let C(m)

B
⌘ C(m)

B
(0) = dmCB(t)/dtm|t=0,

and suppose that the cost functions for bases B1 and
B2 have convergent Taylor expansions over 0  t  T .

Then, if there is a k such that C(m)

B1
= C(m)

B2
for m < k

and C(m)

B1
< C(m)

B2
for m = k, then CB1(t) < CB2(t) in a

domain 0  t  ⌧ for some ⌧ < T . We want to find the
basis that minimizes the cost in this sense in the vicinity
of t = 0. We can formalize this condition in terms of the
sequence of derivatives of the cost function at t = 0:

SB =
⇣
C(0)

B
, C(1)

B
, C(2)

B
, · · ·

⌘
. (5)

We write SB1 < SB2 if there is some k such that C(m)

B1
=

C(m)

B2
for m < k and C(m)

B1
< C(m)

B2
for m = k.

In what follows, we say that an ordered basis B is a
complete Krylov basis Kc if its initial elements are the
Krylov basis in the correct order. In more detail, say
the Krylov basis has K vectors. K might be smaller
than the Hilbert space dimension, so in such cases the
usual Krylov basis does not span the full Hilbert space.
We call B a complete Krylov basis if |Bni = |Kni, for
n = 0, · · · ,K � 1. The rest of the basis is unspecified
for the concerns of this definition. This defines a class
of bases for which the number of unspecified elements is
the dimension of the Hilbert space minus the dimension
of the Krylov basis. We will prove that any complete
Krylov basis Kc, as defined above, minimizes the deriva-
tive sequence S and hence has a lower cost than any other
basis, at least in the vicinity of t = 0.

Theorem 1 For any basis B, SK  SB, with equality
only for the complete Krylov bases B = Kc.

Proof: We will prove the theorem by induction by
showing that any orthonormal basis B whose first N el-
ements coincide with the Krylov basis satisfies SB < SB0

for all bases B0 whose first N elements do not coincide
with K.

The first element of the Krylov basis is |K0i = | (0)i.
Suppose now that the first element of B is |B0i = | 0i.
Then the cost is C(0)

B1
= CB(0) =

P
n cn|h (0)|Bni|2 = c0

because |Bi>0i are orthogonal to | (0)i. Any basis B0

which does not include | 0i as its first element will have
a higher cost, because, from (3) it will be a weighted
average of cn�0, and hence be larger than c0 since cn
increases with n.

To prove the induction step we must evaluate time

derivatives of the cost C(m)

B
(t) = dmCB(t)/dtm. Apply-

ing the derivatives to the right side of (3) and using (1)

gives C(m)

B
(0) =

P
n cnp

(m)

B
(n, 0), where

p(m)

B
(n, t) =

dm pB(n, t)

dtm
= (6)

im
mX

k=0

(�1)k
✓
m

k

◆
h (t)|Hm�k |Bni hBn|Hk | (t)i .

Now, let us assume that the firstN elements of B coincide
with the first N elements of K, i.e. |Bii = |Kii for i =

0, 1, · · ·N�1. Following (7), this means that p(m)

B
(n, t) =

p(m)

K
(n, t) for basis elements n < N and all derivatives m.

To complete the proof we need two lemmas.

Lemma 1: Suppose the first N elements B are the first

N elements of K, up to a phase factor. Then p(m)

B
(n, 0) =

0 for n � N,m < 2N .

Proof: For k < N , Hk | (0)i is a linear combination
of |B0i , . . . , |BN�1i, since these vectors equal the first N
elements of the Krylov basis. Orthogonality of the basis
B then implies that h (0)|Hk |Bni = hBn|Hk | (0)i = 0

and a “cost function” (a family,             )

Complexity = “Spread in Hilbert space”  

cn = n
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minimum (finite t) for the 
Krylov basis!

Intuition (Induction): For discrete time evolution, assume N-1 vectors equal to the 
Krylov basis. Then in the next step:
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Lemma 1: Suppose the first N elements B are the first

N elements of K, up to a phase factor. Then p(m)

B
(n, 0) =

0 for n � N,m < 2N .

Proof: For k < N , Hk | (0)i is a linear combination
of |B0i , . . . , |BN�1i, since these vectors equal the first N
elements of the Krylov basis. Orthogonality of the basis
B then implies that h (0)|Hk |Bni = hBn|Hk | (0)i = 0
for any n � N and k < N . For m  2N � 1, we know
that for any integer k, either m � k or k is less than N .
Since every term in (6) involves either h (0)|Hk |Bni or
h (0)|Hm�k |Bni (or their conjugates) we conclude that

p(m)

B
(n, 0) = 0 for n � N with m  2N � 1.

Lemma 2: Suppose |Bii = |Kii for i = 0, · · ·N � 1,

up to phases. Then, C(2N)

B
(0) � C(2N)

K
(0), with equality

when K contains precisely N vectors, in which case B is
a complete Krylov basis, or when |BN i also equals |KN i
up to a phase factor.

Proof: Since the first N basis vectors agree between
B and K, Lemma 1 has already shown that for n � N ,

p(m)

B
(n, 0) = 0 when m  2N � 1. So we consider m =

2N . Examination of (6) shows that for n � N there is a

single non-zero term in p(2N)

B
(n, 0), namely

p(2N)

B
(n, 0) =

✓
2N

N

◆
h |HN |Bni hBn|HN | i . (7)

Let |Xi, which is not necessarily normalized, be the com-
ponent of HN | i orthogonal to |B0i , . . . , |BN�1i. By
the definition of the Krylov basis K, |Xi / |KN i. Due
to orthogonality, for n � N we have

p(2N)

B
(n, 0) =

✓
2N

N

◆
hX|Bni hBn|Xi . (8)

By completeness of bases,
P

n hX|Bni hBn|Xi = hX|Xi.
If |Xi = 0, then K only contains N vectors, B is a com-

plete Krylov basis and C(2N)

B
(0) = C(2N)

K
(0). Otherwise,

hX|Xi > 0 and

C(2N)

B
(0) =

X

n

cn p
(2N)

B
(n, 0) (9)

=
N�1X

n=0

cn p
(2N)

B
(n, 0) +

✓
2N

N

◆ DX

n=N

cn hX|Bni hBn|Xi

�
N�1X

n=0

cn p
(2N)

K
(n, 0) +

✓
2N

N

◆
cN hX|Xi = C(2N)

K
(0) ,

where D is the dimension of the full Hilbert space, which
could be infinite. In the last line we used the fact that
cn is increasing, that

P
n hX|Bni hBn|Xi = hX|Xi, and

that the firstN basis vectors of B andK are equal. Equal-
ity is achieved only when |BN i / |Xi / |KN i, up to a
phase. Otherwise we have a strict inequality.

Given these lemmas, suppose that a basis B coincides
with the Krylov basis K up to phases in the first N basis
elements, and deviates thereafter. Lemma 1 tells us that

the first 2N derivatives of the cost function are the same
as those of the Krylov basis, because the other basis ele-
ments contribute zero. Lemma 2 tells us that if |BN i is
not |KN i up to a phase, then its 2Nth derivative will be
larger. Since the first 2N derivatives are equal and the
2Nth derivative of CB(t) is larger, SB > SK, completing
the proof of the theorem.

Corollary 1 Any cost function of the form (3) defined in
terms of an increasing, positive sequence cn and a basis
B is minimized near t = 0 by a complete Krylov basis
Kc. Thus the associated spread complexity function (4)
is C(t) = CK(t).

We have arrived at a basis-independent definition for
the complexity, relative to the initial condition, of a quan-
tum state evolving continuously in time.

A. Minimization for discrete time evolution

The above results can be extended to show that, for
discrete time evolution, the Krylov basis minimizes the
cost (3) for all times. Suppose the discrete time evo-
lution is given by Un| (0)i = | ni, for a sequence of
unitaries Un with U0 = 1 and n = 0, 1, · · · . We define
the Krylov basis by choosing |K0i = | 0i and then re-
cursively orthogonalizing each | ni with all the |Kji for
j < n. As in the continuous time proof, we must choose
the initial state as part of the basis that minimizes the
cost, i.e., it should be the first state of the Krylov basis
| 0i = |K0i. Now assume the first N vectors of certain
basis B agree with the Krylov basis, namely |Bii = |Kii
for i = 0, · · ·N � 1. By assumption

n  N � 1 ! | ni =
N�1X

j=0

hKj | ni|Kji, (10)

and the costs of both bases are the same until discrete
time n = N � 1. Now we can decompose the next state
into a part belonging to the Krylov subspace |Kii, for
i = 0, · · ·N � 1, and a part perpendicular to it. Since
the bases are defined up to phases, we necessarily have
something of the form

| N i = p?|KN i+ pk|�ki, (11)

where |KN i is the next element of the Krylov basis by
definition, and |�ki can be expanded in terms of |Kii, for
i = 0, · · ·N � 1. A basis di↵erent from the Krylov one
would necessarily not include |KN i. Therefore, the cost
at discrete time N would be larger, since we would have
to express |KN i in the new basis, which would require at
least two vectors. Since the contribution to the cost from
the part |�ki is the same in both bases, the cost must
increase when we divide |KN i into several contributions,
since cn is a strictly increasing function of n.

This completes the proof that the Krylov basis mini-
mizes the cost function for all times. In this argument



Extensive studies of the operator growth
[Rabinovici, Sanchez-Garrido, Shir, Sonner ’21’22]

[Barbon, Rabinovici, Shir, Sinha ’19]

Numerics (Operator growth in XXZ chain + Integrability breaking terms, RMT)

 S=#dof

[Parker, Cao, Avdoshkin, Scaffidi, Altman ’19]

Continuum limit: x = ✏n, '(x, t) = 'n(t), v(x) = 2✏bn = 2✏b(✏n)
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@t'(x, t) + v(x)@x'(x, t) +
1

2
v0(x)'(x, t) = 0
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(cont. eq for                )p = |'|2
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Complexity of the TFD evolution [Balasubramanian, PC, Magan, Wu ’22]

Consider the TFD state

Z(�) =
X

n

e��En
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| �i =
1p
Z(�)

X

n

e�
�
2 En |n, ni
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and its time evolution [Hartman,Maldacena ’13]

7

for computing all the  n(t). We start by noting that b0 =
0 and use  0(t) and its time derivative in (26) to compute
 1(t). Then, given  0(t) and  1(t) we can compute  2(t)
and so on.

Finally, given  n(t) we apply our definition of com-
plexity in (3, 4):

C(t) = CK(t) =
X

n

n pn(t) =
X

n

n | n(t)|2 , (27)

where we took the complexity coe�cients in the cost
function (3) to be cn = n. With this definition, com-
plexity measures the average depth of support of a time
evolving state in the Krylov basis. Formally, this quan-
tity is the expectation value in the evolving state | (t)i
of a “complexity operator”

K̂ =
X

n

n|KnihKn| , (28)

such that the complexity reads

C(t) = h (t)|K̂ | (t)i . (29)

Below we will also consider the entropic definition of com-
plexity (13)

CS = eS = e
�

P
n

pn log pn

, (30)

which can also be calculated from the pn = | n|2 . This
can also be understood as the exponential of the entropy
of the algebra generated by the complexity operator. See
[35] for the definition of the entropy of an operator alge-
bra.

D. Survival, TFD and the partition sum

We will find it illuminating to study complexity growth
of the Thermo-Field Double (TFD) state defined as fol-
lows. Consider a Hamiltonian H acting on a Hilbert
space H, with eigenstates |ni and eigenvalues En. To
purify the thermal ensemble we construct the maximally
entangled TFD state

| �i ⌘
1p
Z�

X

n

e�
�En

2 |n, ni , (31)

in the tensor product of the original Hilbert space with
itself. This state is invariant under evolution with Hamil-
tonian HL �HR, where HL,R = H act independently on
the left and right copies of H. However, the state is not
invariant under evolution by the action of a single Hamil-
tonian, say HL ⌘ H. Equivalently, we could evolve by
(HL +HR)/2 but these evolutions are equal because the
TFD state is invariant under the action of (HL�HR)/2.
Unitary evolution with a single Hamiltonian gives

| �(t)i = e�iHt| �i = | �+2iti . (32)

Notice that the TFD and its time evolution are contained
within the subspace spanned by {|n, ni}. As a result, the
finite dimension algorithm for computing the Lanczos co-
e�cients need only work within this small subspace, sim-
plifying numerical evaluations. The maximum dimension
of the explored Hilbert space in this time evolution is
therefore the dimension of the original Hilbert space H.
In the AdS/CFT correspondence, such TFD states are

dual to the eternal black hole [36]. The spectrum of the
theory is conveniently packaged in the analytically con-
tinued partition function

Z��it =
X

n

e�(��it)En , (33)

and the related spectral form factor S��it = |Z��it|2.
These time-dependent quantities have been extensively
studied in random matrix theory and quantum gravity
[14, 15], for example to explore chaotic behavior.
The interesting feature for us is that the survival am-

plitude for the time evolved TFD state has a simple ex-
pression in terms of the partition function

S(t) = h �+2it| �i =
Z��it

Z�
. (34)

The spectral form factor is then the survival probability
of a dynamical process, corresponding to the evolution of
the TFD. We can use this fact to extract the probabilities
of the Krylov basis states.
Given this survival amplitude, the moments in (22)

µn ⌘ dn

dtn
S(t)

����
t=0

=
1

Z�
Tr

�
e��H (iH)n

�
, (35)

are thermal expectation values of the Hamiltonian. In
holographic theories, the partition function and the en-
ergy moments have simple geometric duals, and, at least
in 2d gravity [37–42], there are non-perturbative defini-
tions of these quantities. Since our measure of complex-
ity is a functional of the survival amplitude, the relation
of the latter to the partition function provides a path to-
wards understanding the relation between quantum com-
plexity, geometry and quantum gravity, and perhaps the
conjectures relating complexity in quantum field theory
to spatial volumes and actions in a dual theory of gravity
[43–45]. Likewise, the relation between the spectrum of
the Hamiltonian and the dynamics of complexity in TFD
states provides a bridge from the classification of phases
of quantum matter via the associated partition functions,
to a novel characterization in terms of the dynamics of
quantum complexity.
Finally, although we have shown that complexity dy-

namics in the TFD state depends only on the spectrum, if
we start with a general quantum state | (0)i, complexity
growth will depend both on the spectrum and the struc-
ture of energy eigenstates. Indeed, for a general initial
state the survival amplitude is

h (t)| i =
X

n

ei En th (t)|nihn| (0)i , (36)
H = HL +HR
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H = HL/R
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Goal: expand this state in the Krylov basis and compute complexity.

Lanczos coefficients from the moments of

S(t) = h �(t)| �i =
Z(� � it)

Z(�)
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Non-universal, can be extracted once we know Z (spectrum!).

(~SFF)!

See [Balasubramanian, PC, Magan, Wu ’22]

[Polchinski et al. ’16]



Evolution of the TFD for RMT

Consider a random Hamiltonian (NxN, Hermitian matrix, GUE,…)

H =

0

@
�0.625778 + 0.i 0.0534572 � 0.238692i �0.106837 + 0.170713i

0.0534572 + 0.238692i 0.518485 + 0.i 0.995288 � 0.0813202i
�0.106837� 0.170713i 0.995288 + 0.0813202i �0.589891 + 0.i

1

A

<latexit sha1_base64="vUnRIX1fzPdsEBwRZBwMbgvHfqI="></latexit>

We can easily diagonalise it, compute SFF, moments, Lanczos, etc.

We want to put it into the tri-diagonal form

There exist very efficient algorithms/libraries (Python or Mathematica) to put a matrix into 
this form (Hessenberg). So we can also read off Lanczos coeff. this way. 

and exponentiate

We also need to “rotate” a TFD into vec: {1,0,0,….}

Then applying exp(-iHt) to the initial state gives all the �n(t)

<latexit sha1_base64="UlUTa9FXDZ3eQj4EkV9N3e4uvwA=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXInoMevEYwTwkWcLsZDYZMju7zPQKIeQrvHhQxKuf482/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup35rSeujYjVA44T7kd0oEQoGEUrPXaToeipMp73iiW34s5BVomXkRJkqPeKX91+zNKIK2SSGtPx3AT9CdUomOTTQjc1PKFsRAe8Y6miETf+ZH7wlJxZpU/CWNtSSObq74kJjYwZR4HtjCgOzbI3E//zOimG1/5EqCRFrthiUZhKgjGZfU/6QnOGcmwJZVrYWwkbUk0Z2owKNgRv+eVV0ryoeNXK5X21VLvJ4sjDCZxCGTy4ghrcQR0awCCCZ3iFN0c7L86787FozTnZzDH8gfP5AzvWkAs=</latexit>

[Balasubramanian, PC, Magan, Wu ’22]

1 Magnus Expansion

The main goal is to work generalise the Krylov basis construction for time dependent Hamil-

tonians. The standard root could lead by using the Magnus expansion. Namely, we consider

the following unitary

0

BBBBBB@

a0 b1 0 0 · · ·
b1 a1 b2 0 · · ·
0 b2 a2 b3 · · ·
0 0 b3 a3

. . .

...
...

...
. . .

. . .

1

CCCCCCA
(1.1)

1

Late Times: “Black Holes and RM” [Polchinski et al. ’16]

[J. Erdmenger, S-K. Jian, Z-Y Xian ’23]
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Complexity for TFD evolved with GUE Hamiltonian (Similar for GOE,GSE,SYK)
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Figure 11. Quantum state complexity of the time evolved
TFD for small times, and at infinite N , for several values of
� between 2 and 50, corresponding to the GUE ensemble of
random matrices. Complexity starts growing quadratically
and transitions to linear growth at time of order �. The color
bar indicates the value of � for each curve.

relation between an and bn manifests as the first plateau
in the plot of an � 2bn in Fig. (10). The second plateau
in this figure at larger n occurs because an and bn are
both changing very slowly in this regime.

Recall from (2) and (26) that at short times, the time-
evolving state has most of its support on Krylov ba-
sis elements |Kni with small n. As discussed above
an+d = 2bn ⇠ n in this range, just as in the free limit of
the particle moving in the SL(2,R) group (78). In analogy
we expect that complexity grows quadratically at early
times. At later times the time evolution will acquire sup-
port on Krylov basis elements with larger n. As we dis-
cussed above, in the large N limit an = 0 beyond some n
of O(1), and bn is roughly constant for any fixed interval
of n. Using these conditions, the Schrodinger equation
in the Krylov basis (26) becomes a free wave equation in
one dimension, whose solutions are plane waves moving
at constant speed. This implies that the mean position
in the Krylov basis, and hence the complexity grows lin-
early with time. This is the same regime as the one
found in [47, 52, 54] for operator growth at large times.
This regime was also found in the context of Nielsen’s
complexity in [5]. Using random quantum circuits it has
been found recently in [31].

These regimes of complexity growth are confirmed in
Fig. 11, where we see a transition from initial quadratic
growth to linear growth at a time of order �3/2 (recall
that we are working in units where E0 = 1). In the
quadratic growth regime, we checked numerically that,
just like in the Schwarzian theory, the growth rate is
controlled by the variance in energy which is of order
1/�2.

As we discussed above, although the bn are approxi-
mately constant over any finite interval in n in the large
N limit, over intervals of O(N) they do gradually decay
to zero. This is because the Lanczos algorithm must halt
when we reach the dimension of the Hilbert space. This
means the support of the state in the Krylov basis cannot
keep growing, but it is possible for the support to narrow

Figure 12. Quantum state complexity of the time evolved
TFD over an exponentially large period of time for dif-
ferent values of N and �, as described in the main text.
Dark Hues: GUE ensemble. Going from highest
(blue) to lowest (yellow) curves we have � = {0, 1, 2, 5, 10}.
In each case we have plotted ensembles with N =
{1024, 1280, 1536, 1792, 2048, 2560, 3072, 3584, 4096}. Com-
plexity grows linearly to a peak, followed by a downward slope
to a plateau. Light Hues: Ensemble with the same density
of states as GUE, but without correlations between eigenval-
ues. In this case, the curves plateau without reaching a peak
followed by a downward slope.

Figure 13. Spectral Form Factor (survival probability of the
time evolved TFD) over an exponentially large period of time
forN = 4096 and � = 1, averaged over 10 samples of the GUE
ensemble. Dark blue: The GUE esemble of random matrices
displays a ramp followed by a plateau. Light blue: For an
ensemble with the same density of states as the GUE but with
no correlations between eigenvalues, the spectral form factor
displays a plateau without a ramp.

back again. This means that, at large times, complexity
should reach a maximum and then may decay or plateau.
For chaotic systems we indeed expect the maximum in
the complexity to be of O(N) and a plateau at this order
as well.

The dark hued curves in Fig. 12 show how state com-
plexity changes in a variety of GUE ensembles until times
of order the size of the Hilbert space (t/N ⇠ O(1)). It is
immediately clear that the complexity dynamics displays
a characteristic overall structure: a linear ramp for times
that are exponentially large in the entropy, followed by
a peak, and then a downward slope to saturation at an
exponentially large plateau. The onset times and heights
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sis elements |Kni with small n. As discussed above
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the particle moving in the SL(2,R) group (78). In analogy
we expect that complexity grows quadratically at early
times. At later times the time evolution will acquire sup-
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of O(1), and bn is roughly constant for any fixed interval
of n. Using these conditions, the Schrodinger equation
in the Krylov basis (26) becomes a free wave equation in
one dimension, whose solutions are plane waves moving
at constant speed. This implies that the mean position
in the Krylov basis, and hence the complexity grows lin-
early with time. This is the same regime as the one
found in [47, 52, 54] for operator growth at large times.
This regime was also found in the context of Nielsen’s
complexity in [5]. Using random quantum circuits it has
been found recently in [31].

These regimes of complexity growth are confirmed in
Fig. 11, where we see a transition from initial quadratic
growth to linear growth at a time of order �3/2 (recall
that we are working in units where E0 = 1). In the
quadratic growth regime, we checked numerically that,
just like in the Schwarzian theory, the growth rate is
controlled by the variance in energy which is of order
1/�2.

As we discussed above, although the bn are approxi-
mately constant over any finite interval in n in the large
N limit, over intervals of O(N) they do gradually decay
to zero. This is because the Lanczos algorithm must halt
when we reach the dimension of the Hilbert space. This
means the support of the state in the Krylov basis cannot
keep growing, but it is possible for the support to narrow
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ensemble. Dark blue: The GUE esemble of random matrices
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no correlations between eigenvalues, the spectral form factor
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back again. This means that, at large times, complexity
should reach a maximum and then may decay or plateau.
For chaotic systems we indeed expect the maximum in
the complexity to be of O(N) and a plateau at this order
as well.

The dark hued curves in Fig. 12 show how state com-
plexity changes in a variety of GUE ensembles until times
of order the size of the Hilbert space (t/N ⇠ O(1)). It is
immediately clear that the complexity dynamics displays
a characteristic overall structure: a linear ramp for times
that are exponentially large in the entropy, followed by
a peak, and then a downward slope to saturation at an
exponentially large plateau. The onset times and heights
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that we are working in units where E0 = 1). In the
quadratic growth regime, we checked numerically that,
just like in the Schwarzian theory, the growth rate is
controlled by the variance in energy which is of order
1/�2.

As we discussed above, although the bn are approxi-
mately constant over any finite interval in n in the large
N limit, over intervals of O(N) they do gradually decay
to zero. This is because the Lanczos algorithm must halt
when we reach the dimension of the Hilbert space. This
means the support of the state in the Krylov basis cannot
keep growing, but it is possible for the support to narrow

Figure 12. Quantum state complexity of the time evolved
TFD over an exponentially large period of time for dif-
ferent values of N and �, as described in the main text.
Dark Hues: GUE ensemble. Going from highest
(blue) to lowest (yellow) curves we have � = {0, 1, 2, 5, 10}.
In each case we have plotted ensembles with N =
{1024, 1280, 1536, 1792, 2048, 2560, 3072, 3584, 4096}. Com-
plexity grows linearly to a peak, followed by a downward slope
to a plateau. Light Hues: Ensemble with the same density
of states as GUE, but without correlations between eigenval-
ues. In this case, the curves plateau without reaching a peak
followed by a downward slope.

Figure 13. Spectral Form Factor (survival probability of the
time evolved TFD) over an exponentially large period of time
forN = 4096 and � = 1, averaged over 10 samples of the GUE
ensemble. Dark blue: The GUE esemble of random matrices
displays a ramp followed by a plateau. Light blue: For an
ensemble with the same density of states as the GUE but with
no correlations between eigenvalues, the spectral form factor
displays a plateau without a ramp.

back again. This means that, at large times, complexity
should reach a maximum and then may decay or plateau.
For chaotic systems we indeed expect the maximum in
the complexity to be of O(N) and a plateau at this order
as well.
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back again. This means that, at large times, complexity
should reach a maximum and then may decay or plateau.
For chaotic systems we indeed expect the maximum in
the complexity to be of O(N) and a plateau at this order
as well.

The dark hued curves in Fig. 12 show how state com-
plexity changes in a variety of GUE ensembles until times
of order the size of the Hilbert space (t/N ⇠ O(1)). It is
immediately clear that the complexity dynamics displays
a characteristic overall structure: a linear ramp for times
that are exponentially large in the entropy, followed by
a peak, and then a downward slope to saturation at an
exponentially large plateau. The onset times and heights
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Figure 16. Snapshots of the probability distribution in the
Krylov basis of the time evolved TFD for a range of times as
specified above each panel. This plot corresponds to � = 0,
N = 4096 and the GUE ensemble. The horizontal axis shows
the index of the Krylov basis elements from 1 to 4096 and the
y-axis shows the probability that the initial state has evolved
so that it is found in the given basis state. At t = 0 the y-axis
runs from 0 to 1 and all the probability weight is on the initial
state. At t = 40000 the mean probability is 1/4096. Thus,
we arranged the scale of each panel to better show the spread
of the wavefunction over the Krylov basis.

Figure 17. Snapshots of the probability distribution in the
Krylov basis of the time evolved TFD for a range of times as
specified above each panel. This plot corresponds to � = 5,
N = 4096 and the GUE ensemble. The horizontal axis shows
the index of the Krylov basis elements and the y-axis shows
the probability that the initial state has evolved so that it
is found in the given basis state. The y-axis scales di↵er in
each panel (see caption of Fig. 16 for an explanation of this
choice).

sidered below.
We can also characterize the spread of the wavefunc-

tion across the Krylov basis in terms of the entropic def-
inition of complexity (30) or the variance of the distribu-
tion of probabilities of the basis states. These quantities
are displayed in Figs. 14 and 15 and also show a ramp, a
peak, slope, and plateau.

It is also illuminating to examine the explicit form of
the wavefunction in the Krlov basis at di↵erent moments
of time. Figs. 16 and (17) show the spread of wavefunc-
tion over the Krylov basis for � = 0, 5 for a range of
times from t = 0 until late times when the complexity
has plateaued. At t = 0 the wavefunction is localized

Figure 18. Quantum state complexity of the time
evolved TFD state in the GOE ensemble over exponen-
tially large time, for di↵erent values of � = {0, 1, 2, 5, 10}.
In each case we have plotted ensembles with N =
{1024, 1280, 1536, 1792, 2048, 2560, 3072, 3584, 4096}. Notice
that after rising to a peak, the complexity decays smoothly
to the plateau value.

on the initial TFD state which is also the first Krylov
basis element. The dynamics then looks like a probabil-
ity shockwave that starts on the initial state and prop-
agates outward to higher basis elements, leaving a tail
of probability behind. For high temperatures (� ! 0),
the probability is initially concentrated at the shockwave
front, while for intermediate and low temperatures, the
probability distribution over the Krylov basis is more
concentrated in the middle of the distribution. But in
both cases, when the shockwave reaches the last Krylov
basis vector, it is far from being stationary. The wave
bounces back and this gives rise to the downward slope
after the peak in state complexity. In the entropic defi-
nition of complexity, there is also a downward slope after
the bounce of the shockwave (Fig. 14) for most tempera-
tures. However, at infinite temperature the probability is
so concentrated at the shockwave front that the distribu-
tion actually continues to spread after bouncing from the
edge of the Krylov chain so that the entropic complexity
does not show a peak and download slope in this limit
(dark blue line in Fig. 14).
We can repeat our computations for the GOE ensem-

ble, defined as an ensemble of real symmetric N ⇥ N
matrices H with Gaussian measure

1

ZGOE(N)

e�
N
4 Tr(H2

) , (124)

and the GSE ensemble, defined as an ensemble of N ⇥N
Hermitian quaternionic matrices with Gaussian measure

1

ZGSE(N)

e�NTr(H2
) . (125)

The details of the computation are the same as for the
GUE ensemble. As reviewed above, these ensembles
mainly di↵er in the specific universal correlation func-
tions between nearby and far away energy eigenvalues. In
fact, as described in [14], spectral rigidity of the matrix
ensembles, related to the correlations of far away energy

Ramp, Peak, Slope, Plateau

Slope, Dip, Ramp, Plateau
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Figure 11. Quantum state complexity of the time evolved
TFD for small times, and at infinite N , for several values of
� between 2 and 50, corresponding to the GUE ensemble of
random matrices. Complexity starts growing quadratically
and transitions to linear growth at time of order �. The color
bar indicates the value of � for each curve.

relation between an and bn manifests as the first plateau
in the plot of an � 2bn in Fig. (10). The second plateau
in this figure at larger n occurs because an and bn are
both changing very slowly in this regime.

Recall from (2) and (26) that at short times, the time-
evolving state has most of its support on Krylov ba-
sis elements |Kni with small n. As discussed above
an+d = 2bn ⇠ n in this range, just as in the free limit of
the particle moving in the SL(2,R) group (78). In analogy
we expect that complexity grows quadratically at early
times. At later times the time evolution will acquire sup-
port on Krylov basis elements with larger n. As we dis-
cussed above, in the large N limit an = 0 beyond some n
of O(1), and bn is roughly constant for any fixed interval
of n. Using these conditions, the Schrodinger equation
in the Krylov basis (26) becomes a free wave equation in
one dimension, whose solutions are plane waves moving
at constant speed. This implies that the mean position
in the Krylov basis, and hence the complexity grows lin-
early with time. This is the same regime as the one
found in [47, 52, 54] for operator growth at large times.
This regime was also found in the context of Nielsen’s
complexity in [5]. Using random quantum circuits it has
been found recently in [31].

These regimes of complexity growth are confirmed in
Fig. 11, where we see a transition from initial quadratic
growth to linear growth at a time of order �3/2 (recall
that we are working in units where E0 = 1). In the
quadratic growth regime, we checked numerically that,
just like in the Schwarzian theory, the growth rate is
controlled by the variance in energy which is of order
1/�2.

As we discussed above, although the bn are approxi-
mately constant over any finite interval in n in the large
N limit, over intervals of O(N) they do gradually decay
to zero. This is because the Lanczos algorithm must halt
when we reach the dimension of the Hilbert space. This
means the support of the state in the Krylov basis cannot
keep growing, but it is possible for the support to narrow

Figure 12. Quantum state complexity of the time evolved
TFD over an exponentially large period of time for dif-
ferent values of N and �, as described in the main text.
Dark Hues: GUE ensemble. Going from highest
(blue) to lowest (yellow) curves we have � = {0, 1, 2, 5, 10}.
In each case we have plotted ensembles with N =
{1024, 1280, 1536, 1792, 2048, 2560, 3072, 3584, 4096}. Com-
plexity grows linearly to a peak, followed by a downward slope
to a plateau. Light Hues: Ensemble with the same density
of states as GUE, but without correlations between eigenval-
ues. In this case, the curves plateau without reaching a peak
followed by a downward slope.

Figure 13. Spectral Form Factor (survival probability of the
time evolved TFD) over an exponentially large period of time
forN = 4096 and � = 1, averaged over 10 samples of the GUE
ensemble. Dark blue: The GUE esemble of random matrices
displays a ramp followed by a plateau. Light blue: For an
ensemble with the same density of states as the GUE but with
no correlations between eigenvalues, the spectral form factor
displays a plateau without a ramp.

back again. This means that, at large times, complexity
should reach a maximum and then may decay or plateau.
For chaotic systems we indeed expect the maximum in
the complexity to be of O(N) and a plateau at this order
as well.

The dark hued curves in Fig. 12 show how state com-
plexity changes in a variety of GUE ensembles until times
of order the size of the Hilbert space (t/N ⇠ O(1)). It is
immediately clear that the complexity dynamics displays
a characteristic overall structure: a linear ramp for times
that are exponentially large in the entropy, followed by
a peak, and then a downward slope to saturation at an
exponentially large plateau. The onset times and heights

[J. Erdmenger, S-K. Jian, Z-Y Xian ’23]



Motivation: “Modular Hamiltonian”

that for the TFD evolution above becomes closely related to the spectral form factor

S(t) =
Z(� � it)

Z(�)
=

X

n

µn

tn

n!
. (1.6)

The moments µn play a very important role and are related to the expectation values of HL

in the original state as

µn = hK0|(iHL)
n
|K0i ⌘ �h |(iHL)

n
| i�. (1.7)

In the following, we would like to slightly abstract this ideas to the context of modular

Hamiltonians.

2 Modular Hamiltonian and Modular Evolution

Note that in the above, the main object of interest is the analytically continued partition

function that captures all the important information about the spectrum of the Hamiltonian

Z(�) =
X

n

e��En . (2.1)

Mathematically, we can apply the same procedure to the modular Hamiltonian and it’s

spectrum. See e.g. [2] we also some of the coherent states technology and AQFTs was

employed.

More precisely, we define the modular Hamiltonian of some reduced density matrix ⇢A as

⇢A ⌘ e�HA . (2.2)

When we compute the trace of it’s n� th power (in replica computations or Renyi entropies)

we can define it as a ”modular” partition function

Tr(⇢n
A
) =

X

n

e�nEn ⌘ Z̃(� = n), (2.3)

where En are the eigenvalues of the modular Hamiltonian. If we want to apply the Krylov

basis and spread complexity ideas to this modular partition function and spectrum it may

be natural to consider the so-called half-sided modular flow. Namely given the Schmidt

decomposition and Schmidt coe�cients �a we could write

|
p
⇢i =

X

a

p
�a |aiA |ai

B
, (2.4)

we could evolve it with (usually people refer to this modular time as s but we can just

continue using t)

|
p
⇢(s)i = e�isHA⌦1B

��⇢1/2
↵
, (2.5)

2

Setup: H = HA ⌦HB
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Reduced density matrix: Modular Hamiltonian

“Entanglement spectrum”

Tomita-Takesaki theory
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| i =
X

n

p
�n|nAi|nBi
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Much more information than EE. (e.g. topological order…)

Important AdS/CFT: Bulk reconstruction and bulk locality 

Modular flow of operators: O 2 A

<latexit sha1_base64="wtxFkGHU7eJI+p8BbS6PRcMoAKU=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRS0WXVjTsr2Ac0oUymk3boZBJmJoUS+iduXCji1j9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zbZXW1jc2t8rblZ3dvf0D+/CoreJUEtoiMY9lN8CKciZoSzPNaTeRFEcBp51gfJf7nQmVisXiSU8T6kd4KFjICNZG6tu2F2E9IphnDzOPCXTTt6tOzZkDrRK3IFUo0OzbX94gJmlEhSYcK9VznUT7GZaaEU5nFS9VNMFkjIe0Z6jAEVV+Nk8+Q2dGGaAwluYJjebq740MR0pNo8BM5jnVspeL/3m9VIfXfsZEkmoqyOJQmHKkY5TXgAZMUqL51BBMJDNZERlhiYk2ZVVMCe7yl1dJ+6Lm1muXj/Vq47aoowwncArn4MIVNOAemtACAhN4hld4szLrxXq3PhajJavYOYY/sD5/ADeQk2Q=</latexit>

Os ⌘ eisHAOe�isHA

<latexit sha1_base64="GZeqk+3poaiZ5Nh/MOuzYlwUox8=">AAACG3icbZC7TgJBFIZn8YZ4W7W0mUhMbCS7BKMlakMnJnJJADezwwEmzF6cmSUhm30PG1/FxkJjrEwsfBsH2ALBk0zy5/vPyZzzuyFnUlnWj5FZWV1b38hu5ra2d3b3zP2DugwiQaFGAx6IpkskcOZDTTHFoRkKIJ7LoeEObyZ+YwRCssC/V+MQOh7p+6zHKFEaOWax7RE1oITHt4kj2/AYsRGGh5jJinOVzJmanc2gY+atgjUtvCzsVORRWlXH/Gp3Axp54CvKiZQt2wpVJyZCMcohybUjCSGhQ9KHlpY+8UB24ultCT7RpIt7gdDPV3hK5ydi4kk59lzdOVlWLnoT+J/XilTvshMzP4wU+HT2US/iWAV4EhTuMgFU8bEWhAqmd8V0QAShSseZ0yHYiycvi3qxYJcK53elfPk6jSOLjtAxOkU2ukBlVEFVVEMUPaEX9IbejWfj1fgwPmetGSOdOUR/yvj+BWsDokQ=</latexit>

�is

<latexit sha1_base64="CGbA2r4Kp/dj/yU6MRU4FqcN4Rg=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LGoB48V7Ae0sWy2m3bpZjfsToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLRzdRvPTFtuJIPOE5YEJOB5BGnBK3U6d4ygeQx42bSK1e8qjeDu0z8nFQgR71X/ur2FU1jJpEKYkzH9xIMMqKRU8EmpW5qWELoiAxYx1JJYmaCbHbyxD2xSt+NlLYl0Z2pvycyEhszjkPbGRMcmkVvKv7ndVKMroKMyyRFJul8UZQKF5U7/d/tc80oirElhGpub3XpkGhC0aZUsiH4iy8vk+ZZ1T+vXtyfV2rXeRxFOIJjOAUfLqEGd1CHBlBQ8Ayv8Oag8+K8Ox/z1oKTzxzCHzifP39ukWg=</latexit>

Operator growth and complexity?
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where D(R) is the boundary causal domain of R, which in this case is simply a double light

cone. Again, with Hamiltonian evolution, we can write this as a non-local operator acting

at R. This is the simplest expression that one could have hoped for, however it is easy

to see that such a simple expression can’t be correct if one considers more general regions

and states. This can be traced to the fact that more generally the entanglement wedge

contains a spacetime subregion which is entirely space-like separated from D(R) (the so

called causal shadow region of [5]). This means that bulk operators in that region would

commute with all the local operators in D(R). Then a reconstruction formula analogous

to (1.3) would imply they trivially commute with one another which is inconsistent.

In [10], it was proposed that the simplest expression that would take the previous

complication into account should read:

Φ(Xr) =

∫

R
dxR

∫
dsfR

∆,s(Xr|xR)Os(x) , Os(xR) = ρ−is/2π
R O(xR)ρ

is/2π
R (1.4)

As we will explain later, this conjugation by the density matrix is a natural operation

in the field theory called modular flow. The operators Os(xR) are non-local and can’t

all commute with Φ(Xr). If R is a sphere in the vacuum, this expression reduces to the

Rindler expression (1.3).

The modular hamiltonian is defined as the logarithm of the density matrix. In theories

with a holographic dual, one can think of the modular hamiltonian as an operator in bulk

perturbation theory and it is given by [10, 11]:

KR =
Â(∂r)

4GN
+Kbulk,r +O(GN ) (1.5)

This expression implies that the commutator of bulk operators (which are spacelike sepa-

rated to ∂r) with the boundary modular hamiltonian is equal to the commutator with the

bulk modular hamiltonian. So, an operator in r commutes with the modular hamiltonian

of R̄. This property lead to the conjecture (1.4) and was argued in [12] to be equivalent to

quantum correctability.

In this paper, we will derive the expression (1.4) and write a formula for the smearing

function which only depends on boundary information and is in principle computable. In

the limit where the bulk operator lives in ∂r, this formula simplifies significantly, allowing us

to compute complicated boundary quantities (which depend on the modular hamiltonian)

in terms of simple bulk calculations. The formula we would like to advertise relates the

operators on the RT surface ∂r to the modular average of the boundary operator:
∫ ∞

−∞
dsρ−is/2π

R O(x)ρis/2πR = 4π

∫

∂r
dYRT〈Φ(YRT)O(x)〉Φ(YRT) (1.6)

The outline of the paper is as follows. We start in section 2 by introducing various

properties of modular hamiltonians and modular flows. In section 3, we derive and explore

the expression (1.4). Section 4 deals with entanglement wedge reconstruction when the

bulk operator sits at the RT surface, which is much simpler. In section 5, we comment

on state dependence and the inclusion of interactions. We conclude with some closing

thoughts in section 6.

– 3 –
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Spread/Krylov complexity of Modular Evolution? [PC, J. Magan, D.Patramanis…]

Return amplitude:

that for the TFD evolution above becomes closely related to the spectral form factor

S(t) =
Z(� � it)

Z(�)
=

X

n

µn

tn

n!
. (1.6)

The moments µn play a very important role and are related to the expectation values of HL

in the original state as

µn = hK0|(iHL)
n
|K0i ⌘ �h |(iHL)

n
| i�. (1.7)

In the following, we would like to slightly abstract this ideas to the context of modular

Hamiltonians.

2 Modular Hamiltonian and Modular Evolution

Note that in the above, the main object of interest is the analytically continued partition

function that captures all the important information about the spectrum of the Hamiltonian

Z(�) =
X

n

e��En . (2.1)

Mathematically, we can apply the same procedure to the modular Hamiltonian and it’s

spectrum. See e.g. [2] we also some of the coherent states technology and AQFTs was

employed.

More precisely, we define the modular Hamiltonian of some reduced density matrix ⇢A as

⇢A ⌘ e�HA . (2.2)

When we compute the trace of it’s n� th power (in replica computations or Renyi entropies)

we can define it as a ”modular” partition function

Tr(⇢n
A
) =

X

n

e�nEn ⌘ Z̃(� = n), (2.3)

where En are the eigenvalues of the modular Hamiltonian. If we want to apply the Krylov

basis and spread complexity ideas to this modular partition function and spectrum it may

be natural to consider the so-called half-sided modular flow. Namely given the Schmidt

decomposition and Schmidt coe�cients �a we could write

|
p
⇢i =

X

a

p
�a |aiA |ai

B
, (2.4)

we could evolve it with (usually people refer to this modular time as s but we can just

continue using t)

|
p
⇢(s)i = e�isHA⌦1B

��⇢1/2
↵
, (2.5)

2
such that the return amplitude would be

S(s) = Tr
�
⇢1�is

A

�
= Z̃(1� is). (2.6)

Since Tr(⇢A) = 1 we have Z̃(1) = 1.

Interestingly, the relations between the moments and Lanczos coe�cients are

µ1 = ia0, µ2 = �a20 � b21, µ3 = �i(a30 + 2a0b
2
1 + a1b

2
1), ... (2.7)

They can be solved to give

a0 = �iµ1, b21 = µ2
1 � µ2, a1 = iµ1

✓
2�

µ2
1

b21

◆
+

iµ3

b21
. (2.8)

It will be useful to study some of the simple examples first.

2.1 Example I: Qubit

We can just consider a reduced density matrix with two eigenvalues p and 1�p with 0 < p < 1,

such that

Tr(⇢n) = pn + (1� p)n = Z(� = n). (2.9)

Then we have the return amplitude

S(s) = Z(1� is) = p1�is + (1� p)1�is =
1X

k=0

µk

sk

k!
, (2.10)

with moments

µk = (�i)k
�
p logk(p) + (1� p) logk(1� p)

�
. (2.11)

This way we have

a0 = �p log(p)� (1� p) log(1� p) = S1, (2.12)

and

b1 = ±

p
p(1� p) (log(1� p)� log(p)) , (2.13)

so if we want to make b1 > 0, we should take the sign depending on p > 1/2 or p < 1/2. For

p = 1/2, we have b1 = 0.

Interestingly, we can compute the quantity called capacity of entanglement defined as

CE(⇢) = lim
n!1

n2@2
2 log Tr (⇢

n) = p(1� p) (log(1� p)� log(p))2 . (2.14)

Clearly, we get the relation

CE(⇢) = b21. (2.15)

3

Moments and Lanczos coefficients become interesting QI probes:

a0 = hHAi = SA
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2
1 = hH2

Ai � hHAi2
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EE: Capacity of E:

1. States: Modular Spread Complexity

that for the TFD evolution above becomes closely related to the spectral form factor

S(t) =
Z(� � it)

Z(�)
=

X

n

µn

tn

n!
. (1.6)

The moments µn play a very important role and are related to the expectation values of HL

in the original state as

µn = hK0|(iHL)
n
|K0i ⌘ �h |(iHL)

n
| i�. (1.7)

In the following, we would like to slightly abstract this ideas to the context of modular

Hamiltonians.

2 Modular Hamiltonian and Modular Evolution

Note that in the above, the main object of interest is the analytically continued partition

function that captures all the important information about the spectrum of the Hamiltonian

Z(�) =
X

n

e��En . (2.1)

Mathematically, we can apply the same procedure to the modular Hamiltonian and it’s

spectrum. See e.g. [2] we also some of the coherent states technology and AQFTs was

employed.

More precisely, we define the modular Hamiltonian of some reduced density matrix ⇢A as

⇢A ⌘ e�HA . (2.2)

When we compute the trace of it’s n� th power (in replica computations or Renyi entropies)

we can define it as a ”modular” partition function

Tr(⇢n
A
) =

X

n

e�nEn ⌘ Z̃(� = n), (2.3)

where En are the eigenvalues of the modular Hamiltonian. If we want to apply the Krylov

basis and spread complexity ideas to this modular partition function and spectrum it may

be natural to consider the so-called half-sided modular flow. Namely given the Schmidt

decomposition and Schmidt coe�cients �a we could write

|
p
⇢i =

X

a

p
�a |aiA |ai

B
, (2.4)

we could evolve it with (usually people refer to this modular time as s but we can just

continue using t)

|
p
⇢(s)i = e�isHA⌦1B

��⇢1/2
↵
, (2.5)
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2

By construction, the coe�cients of this expansion satisfy
a discrete Schrodinger equation

i@t n(t) = an n(t) + bn n�1(t) + bn+1 n+1(t), (5)

with boundary condition  n(0) = �n,0. Once we solve it,
we are provided with a probability distribution pn(t) =
| n(t)|2 that contains all the information about the evo-
lution/spread of the state. Finally, the spread complexity
is defined as the average value of n in this distribution

C(t) =
X

n

npn(t). (6)

Intuitively we can think about this measure as a distance
from the origin of a particle hoping on the chain described
by (5). In [20] it was also shown how spread complex-
ity arise from minimisation of certain cost function over
choices of basis.

Clearly, solving (5) is the main step and to do that we
clearly need the Lanczos coe�cients. They are in fact
encoded in the return amplitude

S(t) = h (t)| (0)i = h 0| eiHt | 0i =
X

n

µn

t
n

n!
. (7)

Once we know its moments µn = h 0|(iH)n| 0i, we can
extract the Lanczos coe�cients that are related via poly-
nomial equations, e.g., the first few are

a0 = iµ1, b
2
1 = µ

2
1 � µ2, a1 = i

µ
3
1 � 2µ1µ2 + µ3

µ
2
1 � µ2

. (8)

Since Lanczos coe�cients play such a pivotal role, an im-
portant question that emerged from the recent studies is
their physical interpretation and how di↵erent phenom-
ena can be understood from their scaling. Some progress
in this direction was obtained for random matrices [] and
in this work we also add a new piece to this puzzle.
Let us finally conclude this section by giving a universal
class of initial states that motivates this work. Namely,
if we take the | 0i as the thermofield double state []

| �i =
1p
Z(�)

X

n

e
��En |ni ⌦ |ni , (9)

that is the canonical purification of the thermal density
matrix ⇢ = e

��H , and Z(�) is the partition function at
temperature T = 1/�. Interestingly, when we consider
the time evolution with the Hamiltonian of a single copy
(or a sum of the left and right copy []) the return ampli-
tude becomes the spectral form factor amplitude

S(t) =
Z(� � it)

Z(�)
, (10)

and the Lanczos coe�cients as well as spread complex-
ity are directly linked with the spectrum of the evolving
Hamiltonian. The basic idea of our work is to generalise
the TFD example to arbitrary reduced density matrices
and their modular Hamiltonians.

MODULAR SPREAD COMPLEXITY

In this section we focus on the spread complexity of
modular Hamiltonian evolution. Our starting point will
be a pure quantum state | i in some Hilbert space H.
We first pick a sub-region A and its complement Ac, and
assume a decomposition of the Hilbert space H = HA ⌦
HAc . Our pure state | i can be written using Schmidt
decomposition

| i =
X

i

p
�i |iiA |ii

Ac , (11)

where |ii are basis vectors in A (and the complement).
Next, we define the reduced matrix ⇢A of the sub-region
A as well as the modular Hamiltonian HA by

⇢A = TrAc (| i h |) ⌘ e
�HA . (12)

In analogy with thermal density matrix, we can formally
define the ”modular” partition function with e↵ective in-
verse temperature � = n

Z̃(� = n) = Tr(⇢n
A
) =

X

i

e
�nEi , (13)

where we write the Schmidt coe�cients as �i =
exp(�Ei). We normalise the density matrix Tr(⇢A) = 1
so Z̃(1) = 1. This modular partition function contains
the information about the spectrum of HA and will play
an important role in what follows.
Finally, we define a modular evolution of the state

| (s)i = e
�isHA⌦1Ac | i , (14)

where s is the modular time. Our goal will be to quantify
the spread complexity of this state in various models and
shed light on the Lanczos coe�cients in this evolution.
Indeed, as before we use the Lanczos algorithm to con-
struct an orthonormal basis |Kni and expand our state

| (s)i =
X

n

 n(s) |Kni , (15)

where the expansion coe�cients (i.e., probability ampli-
tudes)  n(s) satisfy (5) with Lanczos coe�cients an and
bn encoded in the return amplitude

S(s) ⌘ h (s)| i = Z̃(1� is). (16)

This object is closely related to the Renyi entropies of
the reduced density matrix ⇢A defined for integer n as

S
(n)
A

=
1

1� n
log(Tr⇢n

A
), (17)

and we have the relation to the analytically continued
Renyi with replica index n = 1� is

S(s) = exp
⇣
is S

(1�is)
A

⌘
. (18)
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or in terms of Renyi entropies



Toy example: Qubit [PC, J. Magan, D.Patramanis…]

such that the return amplitude would be

S(s) = Tr
�
⇢1�is

A

�
= Z̃(1� is). (2.6)

Since Tr(⇢A) = 1 we have Z̃(1) = 1.

Interestingly, the relations between the moments and Lanczos coe�cients are

µ1 = ia0, µ2 = �a20 � b21, µ3 = �i(a30 + 2a0b
2
1 + a1b

2
1), ... (2.7)

They can be solved to give

a0 = �iµ1, b21 = µ2
1 � µ2, a1 = iµ1

✓
2�

µ2
1

b21

◆
+

iµ3

b21
. (2.8)

It will be useful to study some of the simple examples first.

2.1 Example I: Qubit

We can just consider a reduced density matrix with two eigenvalues p and 1�p with 0 < p < 1,

such that

Tr(⇢n) = pn + (1� p)n = Z(� = n). (2.9)

Then we have the return amplitude

S(s) = Z(1� is) = p1�is + (1� p)1�is =
1X

k=0

µk

sk

k!
, (2.10)

with moments

µk = (�i)k
�
p logk(p) + (1� p) logk(1� p)

�
. (2.11)

This way we have

a0 = �p log(p)� (1� p) log(1� p) = S1, (2.12)

and

b1 = ±

p
p(1� p) (log(1� p)� log(p)) , (2.13)

so if we want to make b1 > 0, we should take the sign depending on p > 1/2 or p < 1/2. For

p = 1/2, we have b1 = 0.

Interestingly, we can compute the quantity called capacity of entanglement defined as

CE(⇢) = lim
n!1

n2@2
2 log Tr (⇢

n) = p(1� p) (log(1� p)� log(p))2 . (2.14)

Clearly, we get the relation

CE(⇢) = b21. (2.15)
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Return amplitude:
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Note that in the Krylov basis, the Hamiltonian becomes tri-diagonal

H =

✓
a0 b1
b1 a1

◆

=

 
�p log(p)� (1� p) log(1� p) ±

p
p(1� p) (log(1� p)� log(p)) ,

±
p
p(1� p) (log(1� p)� log(p)) , �p log(1� p)� (1� p) log(p)

!
,

(2.16)

This matrix has two eigenvalues and can be put into diagonal form in the standard way

H =

✓
� log(p) 0

0 � log(1� p)

◆
, ⇢ = e�H . (2.17)

In this simple example we can also play with the state. Namely, we have

|
p
⇢i =

p
p |00i+

p
1� p |11i = |K0i . (2.18)

Then we should have

|K1i = b�1
1 (H � a0) |K0i (2.19)

Then, from the Schrodinger equation

i@s 0(s) = a0 0(s) + b1 1(s), (2.20)

and

i@s 1(s) = a1 1(s) + b1 0(s), (2.21)

The solutions are

 0(s) = p1+is + (1� p)1+is,  1(s) = ⌥

p
p(1� p)((1� p)is � pis), (2.22)

with ⌥ corresponding to ± in b1.

Finally, the modular complexity becomes

C(s) = | 1(s)|
2 = 1� | 0(s)|

2 = 4p(1� p) sin2

✓
s

2
log

1� p

p

◆
. (2.23)

Similar analysis can be performed for (we can generalise this easily to more pi’s)

Tr⇢n = pn1 + pn2 + (1� p1 � p2)
n, (2.24)

with modular Hamiltonian

H =

0

@
� log(p1) 0 0

0 � log(p2) 0

0 0 � log(1� p1 � p2)

1

A . (2.25)

4

Modular Hamiltonian: ⇢ = e�H
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Modular Z:

Compute Lanczos coeff. and put it in the Krylov basis (tri-diag):
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hKn|H|Kmi =
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Modular spread complexity:

C(s) = 4p(1� p) sin2
✓
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<latexit sha1_base64="ZbRbYCYlwbWvXGGOaj39Km3QBdA="></latexit>

| i = p
p|00i+

p
1� p|11i

<latexit sha1_base64="tGRIPfxRZuyRPJuZ0eEjDhTO80k=">AAACHXicbZDLSgMxFIYzXmu9jbp0EyyCIJaJVHQjFN24rGAv0BlKJk3b0EwmJhmhTPsibnwVNy4UceFGfBvTdhba+kPg5zvncHL+UHKmjed9OwuLS8srq7m1/PrG5ta2u7Nb03GiCK2SmMeqEWJNORO0apjhtCEVxVHIaT3sX4/r9QeqNIvFnRlIGkS4K1iHEWwsarmloS818xUWXU4vfX2vTCpHQ8/L0PEUoRMLEcpgyy14RW8iOG9QZgogU6XlfvrtmCQRFYZwrHUTedIEKVaGEU5HeT/RVGLSx13atFbgiOognVw3goeWtGEnVvYJAyf090SKI60HUWg7I2x6erY2hv/VmonpXAQpEzIxVJDpok7CoYnhOCrYZooSwwfWYKKY/SskPawwMTbQvA0BzZ48b2qnRVQqnt2WCuWrLI4c2AcH4AggcA7K4AZUQBUQ8AiewSt4c56cF+fd+Zi2LjjZzB74I+frB9Pmovo=</latexit>
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<latexit sha1_base64="MMIAP3nsMe/tMB1hzvdeiht0DHs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1atXLZq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfTWMvQ==</latexit>
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<latexit sha1_base64="MMIAP3nsMe/tMB1hzvdeiht0DHs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1atXLZq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfTWMvQ==</latexit>
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<latexit sha1_base64="MMIAP3nsMe/tMB1hzvdeiht0DHs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1atXLZq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfTWMvQ==</latexit>
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<latexit sha1_base64="MMIAP3nsMe/tMB1hzvdeiht0DHs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1atXLZq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfTWMvQ==</latexit>



Modular flow of operators [PC, J. Magan, D.Patramanis…]

Total Modular Hamiltonian is well defined in the continuum:

H = HA ⌦ 1B � 1A ⌦HB

<latexit sha1_base64="v7mjOQ/Eql18hxDzZC/CTT6/Kg0=">AAACCHicbVDLSgMxFM3UV62vUZcuDBbBjWVGKroRat3MsoJ9QDsMmTTThmaSIckIpXTpxl9x40IRt36CO//GtB1QWw8Ezj3nXm7uCRNGlXacLyu3tLyyupZfL2xsbm3v2Lt7DSVSiUkdCyZkK0SKMMpJXVPNSCuRBMUhI81wcDPxm/dEKir4nR4mxI9Rj9OIYqSNFNiH3pUXXHeEpjFR0A2qp+5P6QXVwC46JWcKuEjcjBRBhlpgf3a6Aqcx4RozpFTbdRLtj5DUFDMyLnRSRRKEB6hH2oZyZBb5o+khY3hslC6MhDSPazhVf0+MUKzUMA5NZ4x0X817E/E/r53q6NIfUZ6kmnA8WxSlDGoBJ6nALpUEazY0BGFJzV8h7iOJsDbZFUwI7vzJi6RxVnLLpfPbcrFSzeLIgwNwBE6ACy5ABXigBuoAgwfwBF7Aq/VoPVtv1vusNWdlM/vgD6yPbyYcmCk=</latexit>

O(s) = eisHOe�isH

<latexit sha1_base64="DqCReoL2tH91SOm+x8E9wX1r+zs=">AAACE3icbZDLSsNAFIYn9VbrLerSzWARqmBJpKIboeimOyvYC7SxTKaTduhkEmYmQgl5Bze+ihsXirh14863cdJmUVt/GPj5zjnMOb8bMiqVZf0YuaXlldW1/HphY3Nre8fc3WvKIBKYNHDAAtF2kSSMctJQVDHSDgVBvstIyx3dpPXWIxGSBvxejUPi+GjAqUcxUhr1zJOuj9QQIxbfJiV5fEUeYiphLZnBGp1SWUt6ZtEqWxPBRWNnpggy1Xvmd7cf4MgnXGGGpOzYVqicGAlFMSNJoRtJEiI8QgPS0ZYjn0gnntyUwCNN+tALhH5cwQmdnYiRL+XYd3Vnuqqcr6Xwv1onUt6lE1MeRopwPP3IixhUAUwDgn0qCFZsrA3CgupdIR4igbDSMRZ0CPb8yYumeVa2K+Xzu0qxep3FkQcH4BCUgA0uQBXUQB00AAZP4AW8gXfj2Xg1PozPaWvOyGb2wR8ZX78t4Z5d</latexit>

In 2d CFTs for a single interval A=[a,b] in the vacuum we have (SL(2,R))

H = s�1L�1 + s0L0 + s1L1

<latexit sha1_base64="+iKBrtn2pyk9LGWHNx9nr5GP7nY=">AAACB3icbVDLSgMxFM3UV62vUZeCBIsgiGUiFd0IRTdddFHBPqAdhkyatqGZzJBkhDJ058ZfceNCEbf+gjv/xnQ6C209kNzDOfeS3ONHnCntON9Wbml5ZXUtv17Y2Nza3rF395oqjCWhDRLyULZ9rChngjY005y2I0lx4HPa8ke3U7/1QKViobjX44i6AR4I1mcEayN59mH1WnnJGZrU0vtUeQ6seY6pyFTk2UWn5KSAiwRlpAgy1D37q9sLSRxQoQnHSnWQE2k3wVIzwumk0I0VjTAZ4QHtGCpwQJWbpHtM4LFRerAfSnOEhqn6eyLBgVLjwDedAdZDNe9Nxf+8Tqz7V27CRBRrKsjsoX7MoQ7hNBTYY5ISzceGYCKZ+SskQywx0Sa6ggkBza+8SJrnJVQuXdyVi5WbLI48OABH4AQgcAkqoArqoAEIeATP4BW8WU/Wi/Vufcxac1Y2sw/+wPr8AQx5lt8=</latexit>

Return amplitudes

S(s) = hO(s)Oi

<latexit sha1_base64="frSGPQoNrs+zd0E0g4IMY7F//7s=">AAACFnicbVDLSsNAFJ3UV62vqEs3g0WoC0siFd0IRTfurGgf0IQymU7aoZNJmJkIJfQr3Pgrblwo4lbc+TdO0ixq64GBM+fcy733eBGjUlnWj1FYWl5ZXSuulzY2t7Z3zN29lgxjgUkThywUHQ9JwignTUUVI51IEBR4jLS90XXqtx+JkDTkD2ocETdAA059ipHSUs88ua/I40uHIT5gBDoBUkOMWHI70fLMzxFZQc8sW1UrA1wkdk7KIEejZ347/RDHAeEKMyRl17Yi5SZIKIoZmZScWJII4REakK6mHAVEukl21gQeaaUP/VDoxxXM1NmOBAVSjgNPV6abynkvFf/zurHyL9yE8ihWhOPpID9mUIUwzQj2qSBYsbEmCAuqd4V4iATCSidZ0iHY8ycvktZp1a5Vz+5q5fpVHkcRHIBDUAE2OAd1cAMaoAkweAIv4A28G8/Gq/FhfE5LC0besw/+wPj6BfTMn0s=</latexit>

We can extract modular Krylov complexity

C(s) = 2hf(a, b) sinh2(⇡s)

<latexit sha1_base64="Li1AKnJSraH/HbBi7Dqal6Fd8y0=">AAACBHicbVDLSsNAFJ3UV62vqMtuBouQgpSkVHQjFLtxWcE+oIllMp00QyeTMDMRSunCjb/ixoUibv0Id/6N0zYLbT1w4XDOvdx7j58wKpVtfxu5tfWNza38dmFnd2//wDw8ass4FZi0cMxi0fWRJIxy0lJUMdJNBEGRz0jHHzVmfueBCEljfqfGCfEiNOQ0oBgpLfXNYsOS5atqGFjozC+7kvLwvmq5CYWy3DdLdsWeA64SJyMlkKHZN7/cQYzTiHCFGZKy59iJ8iZIKIoZmRbcVJIE4REakp6mHEVEepP5E1N4qpUBDGKhiys4V39PTFAk5TjydWeEVCiXvZn4n9dLVXDpTShPUkU4XiwKUgZVDGeJwAEVBCs21gRhQfWtEIdIIKx0bgUdgrP88ippVytOrXJ+WyvVr7M48qAIToAFHHAB6uAGNEELYPAInsEreDOejBfj3fhYtOaMbOYY/IHx+QNPqpX8</latexit>

Universal exponent of the modular growth

Future: Modular chaos from the operator growth? [de Boer, Lamprou ’19]
[de Boer, Jafferis, Lamprou ’22]

+ bar



Conclusions

• New: Krylov/Spread Complexity for operators/states in many-body systems !

• Computable: analytically and numerically for discrete models and QFTs

• Evolution of TFD in RM: Ramp, Peak, Slope, Plateau

• Crucial ingredient: Return amplitude (2- and higher-point function, SFF etc.)

• New tool for interesting many-body setups (topological phases)

• Complexity of local operators in the bulk? 

• New understanding of entanglement spectra and modular evolution?

• New direction: Spread/Krylov of the modular evolution



Many Open Problems 

Thank You! Stay Tuned! Join the fun ;)

• Precise connection with Holography? Length in JT [Lin’22, Rabinovici et al. ’23]? QGr?

• Universal laws for Spread/Krylov complexity? Is it useful for QI or QC?

• Integrable vs Chaotic growth? Is it sensitive? At which time regime?

• Purely Integrable models? Can we study it using integrability (not just numerics)? 

• Interesting states? More complicated objects (defects, boundaries)?

• Late-time physics of AdS/CFT and extremal Black-Holes? [Boruch et al.]

• Generalisations: Time dep H(t), Open systems etc.



Spread complexity of formation
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2 En |n, ni

<latexit sha1_base64="+NcdSQFw5eDsuzMhXWCihy9odoc="></latexit>
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<latexit sha1_base64="0FZ0b7I4l2DbOrYS2aF0JKNU0Y4="></latexit>

We can write this state as

| �i = eirH̃ |0, 0i

<latexit sha1_base64="K3pXy/fcVJKqzlNlMpWPvdmZXkU=">AAACIHicbVDLSgNBEJyNrxhfUY9eFoPgQcKuROJFCXrJMYJ5QDaG2UlvMmT2wUyvENZ8ihd/xYsHRfSmX+Mk2YMmFgwUVdX0dLmR4Aot68vILC2vrK5l13Mbm1vbO/ndvYYKY8mgzkIRypZLFQgeQB05CmhFEqjvCmi6w+uJ37wHqXgY3OIogo5P+wH3OKOopW6+7Ajw8MGpKd51XEDqSN4f4OUF3CVcOshFD5LqeDyLWSdW6nfzBatoTWEuEjslBZKi1s1/Or2QxT4EyARVqm1bEXYSKpEzAeOcEyuIKBvSPrQ1DagPqpNMDxybR1rpmV4o9QvQnKq/JxLqKzXyXZ30KQ7UvDcR//PaMXrnnYQHUYwQsNkiLxYmhuakLbPHJTAUI00ok1z/1WQDKilD3WlOl2DPn7xIGqdFu1Q8uykVKldpHVlyQA7JMbFJmVRIldRInTDySJ7JK3kznowX4934mEUzRjqzT/7A+P4BOSikOw==</latexit>

H̃ = ↵(a†1a
†
1 + a1a2)

<latexit sha1_base64="SO4fApx5udHCQMlneXOr1qcTL/8=">AAACGHicbZDLSgMxFIYz9VbrrerSzWARFKHOlIpuhKKbLivYC3TqcCZz2oZmLiQZoQx9DDe+ihsXirjtzrcxvSyq9YfAl/+cQ3J+L+ZMKsv6NjIrq2vrG9nN3Nb2zu5efv+gIaNEUKzTiEei5YFEzkKsK6Y4tmKBEHgcm97gblJvPqGQLAof1DDGTgC9kHUZBaUtN3/hKMZ9TKujGwd43IdTeHR86PVQuPYCnoO+uqUzN1+witZU5jLYcyiQuWpufuz4EU0CDBXlIGXbtmLVSUEoRjmOck4iMQY6gB62NYYQoOyk08VG5ol2fLMbCX1CZU7dxYkUAimHgac7A1B9+bc2Mf+rtRPVve6kLIwThSGdPdRNuKkic5KS6TOBVPGhBqCC6b+atA8CqNJZ5nQI9t+Vl6FRKtrl4uV9uVC5nceRJUfkmJwSm1yRCqmSGqkTSp7JK3knH8aL8WZ8Gl+z1owxnzkkv2SMfwB2Bp9f</latexit>

Action in the eigenstates |Kni ⌘ |n, ni

<latexit sha1_base64="rwVyRW/n/OkhC3w+MbopIz2x6xI=">AAACEHicbZA9SwNBEIb3/DZ+nVraLAbRQsKdRLQS0UawUTAayIWwt5lLFvf2zt25QDj9CTb+FRsLRWwt7fw3bj4Ejb6w8PLMDLPzhqkUBj3v0xkbn5icmp6ZLczNLywuucsrlybJNIcKT2SiqyEzIIWCCgqUUE01sDiUcBVeH/fqVx3QRiTqArsp1GPWUiISnKFFDXczkBDh7WlDBVq02ngQwE0mOnSA1fY3brhFr+T1Rf8af2iKZKizhvsRNBOexaCQS2ZMzfdSrOdMo+AS7gpBZiBl/Jq1oGatYjGYet4/6I5uWNKkUaLtU0j79OdEzmJjunFoO2OGbTNa68H/arUMo/16LlSaISg+WBRlkmJCe+nQptDAUXatYVwL+1fK20wzjjbDgg3BHz35r7ncKfnl0u55uXh4NIxjhqyRdbJFfLJHDskJOSMVwsk9eSTP5MV5cJ6cV+dt0DrmDGdWyS85719p5J11</latexit>

H̃ |Kni = ↵(n+ 1) |Kn+1i+ ↵n |Kn�1i

<latexit sha1_base64="e9OFlSA3K8syIa1nVRF0D1Z7KvA=">AAACP3icbZBLSyNBFIWrHZ/xFZ2lm8IgKGLoFkU3I8HZBNwomCikQ6iu3E6KVFc3VbeF0JN/Nhv/gju3s5mFIm7dWUnatxcKTp3vXqruCRIpDLrurTPxY3JqemZ2rjC/sLi0XFxZrZs41RxqPJaxvgyYASkU1FCghMtEA4sCCRdB7/eQX1yBNiJW59hPoBmxjhKh4Ayt1SrWfRSyDVl14EsI8c9JS/ladLp49MtnMumyTbXtbb2wzF4GOd8ec6re4M4rbBVLbtkdFf0qvFyUSF6nreKN3455GoFCLpkxDc9NsJkxjYJLGBT81EDCeI91oGGlYhGYZjbaf0A3rNOmYaztUUhH7vuJjEXG9KPAdkYMu+YzG5rfsUaK4WEzEypJERQfPxSmkmJMh2HSttDAUfatYFwL+1fKu0wzjjbygg3B+7zyV1HfLXt75f2zvVLlOI9jlqyRdbJJPHJAKqRKTkmNcPKX/CN35N65dv47D87juHXCyWd+kg/lPD0DMZ6wNQ==</latexit>
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Expansion

e��! = tanh2(↵r)

<latexit sha1_base64="llSxB9KbZMwHi06OUFH6OrJ7iqU=">AAACC3icbVA9SwNBEN3zM8avqKXNYhC0MNwFRRtBtLGMYFTIxTC3mSSLe3vH7pwQjvQ2/hUbC0Vs/QN2/hs3MYVfDwYe780wMy9KlbTk+x/exOTU9MxsYa44v7C4tFxaWb2wSWYE1kWiEnMVgUUlNdZJksKr1CDEkcLL6OZk6F/eorEy0efUT7EZQ1fLjhRATmqVNvA63wkjJAiTGLswOAwJdO+6uhWCSnvAzXarVPYr/gj8LwnGpMzGqLVK72E7EVmMmoQCaxuBn1IzB0NSKBwUw8xiCuIGuthwVEOMtpmPfhnwTae0eScxrjTxkfp9IofY2n4cuc4YqGd/e0PxP6+RUeegmUudZoRafC3qZIpTwofB8LY0KEj1HQFhpLuVix4YEOTiK7oQgt8v/yUX1UqwW9k72y0fHY/jKLB1tsG2WMD22RE7ZTVWZ4LdsQf2xJ69e+/Re/Fev1onvPHMGvsB7+0TBiKaZQ==</latexit>
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Krylov complexity (of formation)
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<latexit sha1_base64="GeMPTY6wU/tK1ayG3iHV4D6m7+k="></latexit>
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<latexit sha1_base64="ZDsFM8p+GC0MGuKNA6MHQLpgmT8=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKeyKosfgAzxGMA/ILmF20psMmZldZ2YDYcl3ePGgiFc/xpt/4yTZgyYWNBRV3XR3hQln2rjut1NYWV1b3yhulra2d3b3yvsHTR2nikKDxjxW7ZBo4ExCwzDDoZ0oICLk0AqHN1O/NQKlWSwfzTiBQJC+ZBGjxFgp8DUT2L8Fbgi+65YrbtWdAS8TLycVlKPeLX/5vZimAqShnGjd8dzEBBlRhlEOk5KfakgIHZI+dCyVRIAOstnRE3xilR6OYmVLGjxTf09kRGg9FqHtFMQM9KI3Ff/zOqmJroKMySQ1IOl8UZRybGI8TQD3mAJq+NgSQhWzt2I6IIpQY3Mq2RC8xZeXSfOs6p1XLx7OK7XrPI4iOkLH6BR56BLV0D2qowai6Ak9o1f05oycF+fd+Zi3Fpx85hD9gfP5A8SQkXQ=</latexit>

[PC, S. Liu ’22]

General (e.g. T-matrix and chords in DSSYK, AdS2 length )
[M.Berkooz, P.Narayan, J.Simon’18] 
[H.Lin’22][Rabinovici,Sanchez-
Garrido,Shir,Sonner’23]



Probe of topological phases? [PC, S. Liu ’22]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

3

FIG. 1. Behaviour of the spread complexity of formation
C(t1, t2) (equation (16)) for the ground state of the SSH model
|⌦i.

SU(2) coherent states as (see appendix A)
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, (10)

where Nk stands for the normalization, J (±k) correspond
to two decoupled SU(2) algebras for positive and nega-
tive momenta and |1/2,�1/2i denotes a tensor product
over the lowest-weight states of the j = 1/2 representa-

tion (J (±k)
� |1/2,�1/2i±k

= 0). Moreover, the relation
between �k and the physical parameters is given by

sin�k =
|R1|

R
, cos�k =

R3

R
, (11)

where we also denoted

R =
q
t
2
1 + t

2
2 � 2t1t2 cos(k). (12)

Without loss of generality, we can just compute the
spread complexity for positive momenta and the full re-
sult will have an additional factor of 2 from the �k sector.

First, for a single momentum k > 0, using the SU(2)
Baker–Campbell–Hausdor↵ formula and with a slight
abuse of notation, we write the relevant part of the state
in a circuit form (1)
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where s 2 [0, 1] and our ground state is the “target state”
at s = 1. The operator in the exponent is the circuit
Hamiltonian in (1). Note that in these circuits we took
a natural reference state | 0i as the ground state of the
left and right Hamiltonians (see appendix A and also [42]

for other choices). This way of writing makes transparent
the connection with coherent states and we can directly
apply the tools from [28] (see appendix B) to expand our
state in the Krylov basis as (4). Because j = 1/2, we will
only have two basis vectors and two amplitudes
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that satisfy (5) with appropriate Lanczos coe�cients. As
a result, we get the contribution to our complexity from
a single momentum mode
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The complexity of the ground state is obtained by inte-
grating over all the momenta and multiplying by 2 from
k < 0. This yields
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Observe that we took the continuum limit so this result is
proportional to the volume L but, to keep our equations
compact, we rescaled this factor (our C are complexity
“densities”).
This surprisingly simple formula, shown on Fig. 1, in-

deed shows two very di↵erent behaviours of the spread
complexity for the two distinct phases of the model.
Namely, for the non-topological phase with t1 > t2, com-
plexity linearly depends on the ratio t2/t1 but in the
topological phase, with t2 > t1, it is constant. This is our
main result. We also performed analogous computation
for the 1d Kitaev-chain [41], and found that complexity
becomes constant when crossing from a non-topological
to a topological phase in specific cases [42] (see supple-
mentary material D). Note that unlike entanglement en-
tropy or Nielsen-type complexities that require numerics,
(16) is fully analytical.

COMPLEXITY DURING QUANTUM QUENCH

Another framework where we can probe the spread
complexity is given by the so-called quantum quenches.
A typical quench protocol considers a unitary time evolu-
tion of an initial state |⌦ii of some initial HamiltonianHi,
performed with a di↵erent HamiltonianHf for which |⌦ii

is an excited state. Universal features of the evolution of
entanglement and complexity have been extensively stud-
ied in the literature (see e.g. [43–46] and review of closely
related dynamical quantum phase transitions [47]).
Here, we focus on the so-called instantaneous quench

in the SSH model and consider the state

| (t)i = e
�iHf t|⌦ii, (17)

See also Kitaev chain [PC,N. Gupta, S.S.Haque, S. Liu, J. Murugan ’22]
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FIG. 1. Behaviour of the spread complexity of formation
C(t1, t2) (equation (16)) for the ground state of the SSH model
|⌦i.
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Observe that we took the continuum limit so this result is
proportional to the volume L but, to keep our equations
compact, we rescaled this factor (our C are complexity
“densities”).
This surprisingly simple formula, shown on Fig. 1, in-

deed shows two very di↵erent behaviours of the spread
complexity for the two distinct phases of the model.
Namely, for the non-topological phase with t1 > t2, com-
plexity linearly depends on the ratio t2/t1 but in the
topological phase, with t2 > t1, it is constant. This is our
main result. We also performed analogous computation
for the 1d Kitaev-chain [41], and found that complexity
becomes constant when crossing from a non-topological
to a topological phase in specific cases [42] (see supple-
mentary material D). Note that unlike entanglement en-
tropy or Nielsen-type complexities that require numerics,
(16) is fully analytical.

COMPLEXITY DURING QUANTUM QUENCH

Another framework where we can probe the spread
complexity is given by the so-called quantum quenches.
A typical quench protocol considers a unitary time evolu-
tion of an initial state |⌦ii of some initial HamiltonianHi,
performed with a di↵erent HamiltonianHf for which |⌦ii

is an excited state. Universal features of the evolution of
entanglement and complexity have been extensively stud-
ied in the literature (see e.g. [43–46] and review of closely
related dynamical quantum phase transitions [47]).
Here, we focus on the so-called instantaneous quench

in the SSH model and consider the state

| (t)i = e
�iHf t|⌦ii, (17)

Depending on t’s the ground state of the model SU(2) CS:
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time”, can be also taken arbitrary and regarded as the
physical time t (see below).
A useful measure of quantum state complexity can be
defined by a way that some initial state | 0i is spread in
the Hilbert space by a unitary U(s) [25]. Intuitively, a
complex “evolution” will lead to a fast spread over all or-
thogonal states. More precisely, the spread complexity of
| (s)i = U(s) | 0i is estimated by the minimum over all
choices of basis B = {|Bni , n = 0, 1, 2, ...| |B0i = | 0i} of
the following cost function

C(s) = min
B

 
X

n

n|h (s)|Bni|
2

!
. (2)

The fact that makes this definition powerful and com-
putable is that the minimum is attained (see [25] for
proofs) when basis B is the so-called Krylov basis.

The idea behind the Krylov basis for state (1) is
to consider states with all the di↵erent powers of
the circuit Hamiltonian acting on the initial state
| 0i, i.e., {| 0i , H | 0i , H

2
| 0i , ...}, and apply the

Gram–Schmidt orthogonalization procedure, known as
the Lanczos algorithm [29], to this set. In this new basis
|Kni, the circuit Hamiltonian H is generally tri-diagonal
and acts as

H |Kni = an |Kni+ bn |Kn�1i+ bn+1 |Kn+1i , (3)

where coe�cients an and bn are the so-called Lanczos co-
e�cients. The information about them is also contained
in the moments of the return-amplitude (auto-correlator)
S(s) ⌘ h (s)| 0i.

Having constructed the basis that minimizes (2), we
expand our state as

| (s)i =
X

n

 n(s) |Kni , (4)

where, by construction, the complex coe�cients in this
expression satisfy a discrete Schrodinger equation

i@s n(s) = an n(s) + bn n�1(s) + bn+1 n+1(s). (5)

With the knowledge of the Lanczos coe�cients, we can
solve it with initial condition  n(0) = �n,0 (so that we
start from |K0i = | 0i), and determine (4). Note that
unitarity implies that

P
n
(pn(s) ⌘ | n(s)|2) = 1. More-

over, the return amplitude is related to the first coe�-
cient by S(s) =  

⇤
0(s). Last but not the least, the number

of the independent Krylov vectors depends on the Hamil-
tonian as well as the initial state | 0i.
Most importantly, in the Krylov basis, the complexity
(2) becomes

C(s) =
X

n

n| n(s)|
2
, (6)

and for all practical purposes, this will be our work-
ing definition of the spread complexity in the remain-
ing part of this paper. This measure naturally gener-
alizes the Krylov complexity (K-complexity) of opera-
tors [27] to quantum states. Recent studies indicate that
this new notion of complexity can distinguish integrable
and chaotic models [27, 30]. Moreover, the evolution of
the so-called thermofield-double state [31] leads to re-
turn amplitude given by the spectral form factor (see e.g.
[32, 33]) making spread complexity a new probe of quan-
tum chaos. Even though we are only starting to explore
this universal new tool it is clear that its sensitivity to
interesting physics is tantalising [34–37]. In the follow-
ing, we will employ (6) and test wether it does equally
well in integrable systems and in particular, whether it
can detect topological phases.

SPREAD COMPLEXITY IN THE SSH MODEL

Our basic example will be the SSH model of polyacety-
lene [26] (see e.g. [38] for a pedagogical introduction, here
we closely follow the conventions of [39, 40]) given by the
Hamiltonian
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where (cAi, cBi) represent two-flavours of fermion annihi-
lation operators defined at site i on a 1d lattice, t1, t2, µs

are real parameters, and we also assume anti-periodic
boundary conditions (see more in appendix A). We will
take both t1, t2 � 0 and µs = 0. Depending on these
couplings, the model is in one of the two phases: a non-
topological phase for t1 > t2 or a topological phase (topo-
logical insulator) for t2 > t1, separated by a critical point
at t1 = t2.
We will first compute the complexity of the ground

state that, depending on parameters t1 and t2, belongs
to one of the above-mentioned phases of the model. For
that, as well as for later purposes, it will be convenient
to re-write the Hamiltonian in momentum space as (see
[40], and appendix A)

H =
X

k

h
2R3J

(k)
0 + iR1

⇣
J
(k)
+ � J

(k)
�

⌘i
, (8)

where the coe�cients are R1 = t1 � t2 cos(k), R3 =
t2 sin(k) and, for each momentum mode, we denoted the
SU(2) algebra generators

[J (k)
0 , J

(k)
± ] = ±J

(k)
± , [J (k)

+ , J
(k)
� ] = 2J (k)

0 . (9)

Then, the ground state can be written in terms of the

SSH model (polyacetylene)

represents non-topological phase (t1>t2) or 
topological insulator (t1<t2). 

We can use Krylov methods to compute spread 
complexity of formation for a single momentum 
and then sum over.
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alizes the Krylov complexity (K-complexity) of opera-
tors [27] to quantum states. Recent studies indicate that
this new notion of complexity can distinguish integrable
and chaotic models [27, 30]. Moreover, the evolution of
the so-called thermofield-double state [31] leads to re-
turn amplitude given by the spectral form factor (see e.g.
[32, 33]) making spread complexity a new probe of quan-
tum chaos. Even though we are only starting to explore
this universal new tool it is clear that its sensitivity to
interesting physics is tantalising [34–37]. In the follow-
ing, we will employ (6) and test wether it does equally
well in integrable systems and in particular, whether it
can detect topological phases.

SPREAD COMPLEXITY IN THE SSH MODEL

Our basic example will be the SSH model of polyacety-
lene [26] (see e.g. [38] for a pedagogical introduction, here
we closely follow the conventions of [39, 40]) given by the
Hamiltonian
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†
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†
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cBi

⌘
, (7)

where (cAi, cBi) represent two-flavours of fermion annihi-
lation operators defined at site i on a 1d lattice, t1, t2, µs

are real parameters, and we also assume anti-periodic
boundary conditions (see more in appendix A). We will
take both t1, t2 � 0 and µs = 0. Depending on these
couplings, the model is in one of the two phases: a non-
topological phase for t1 > t2 or a topological phase (topo-
logical insulator) for t2 > t1, separated by a critical point
at t1 = t2.
We will first compute the complexity of the ground

state that, depending on parameters t1 and t2, belongs
to one of the above-mentioned phases of the model. For
that, as well as for later purposes, it will be convenient
to re-write the Hamiltonian in momentum space as (see
[40], and appendix A)

H =
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h
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(k)
0 + iR1
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+ � J

(k)
�

⌘i
, (8)

where the coe�cients are R1 = t1 � t2 cos(k), R3 =
t2 sin(k) and, for each momentum mode, we denoted the
SU(2) algebra generators

[J (k)
0 , J

(k)
± ] = ±J

(k)
± , [J (k)

+ , J
(k)
� ] = 2J (k)

0 . (9)

Then, the ground state can be written in terms of the
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FIG. 1. Behaviour of the spread complexity of formation
C(t1, t2) (equation (16)) for the ground state of the SSH model
|⌦i.

SU(2) coherent states as (see appendix A)
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where Nk stands for the normalization, J (±k) correspond
to two decoupled SU(2) algebras for positive and nega-
tive momenta and |1/2,�1/2i denotes a tensor product
over the lowest-weight states of the j = 1/2 representa-

tion (J (±k)
� |1/2,�1/2i±k

= 0). Moreover, the relation
between �k and the physical parameters is given by

sin�k =
|R1|

R
, cos�k =

R3

R
, (11)

where we also denoted

R =
q
t
2
1 + t

2
2 � 2t1t2 cos(k). (12)

Without loss of generality, we can just compute the
spread complexity for positive momenta and the full re-
sult will have an additional factor of 2 from the �k sector.

First, for a single momentum k > 0, using the SU(2)
Baker–Campbell–Hausdor↵ formula and with a slight
abuse of notation, we write the relevant part of the state
in a circuit form (1)

|⌦k(s)i = e
�i

s�k
2

⇣
J

(k)
+ +J

(k)
�

⌘ ����
1

2
,�

1

2

�

k

, (13)

where s 2 [0, 1] and our ground state is the “target state”
at s = 1. The operator in the exponent is the circuit
Hamiltonian in (1). Note that in these circuits we took
a natural reference state | 0i as the ground state of the
left and right Hamiltonians (see appendix A and also [42]

for other choices). This way of writing makes transparent
the connection with coherent states and we can directly
apply the tools from [28] (see appendix B) to expand our
state in the Krylov basis as (4). Because j = 1/2, we will
only have two basis vectors and two amplitudes

 0(s) = cos

✓
s�k

2

◆
,  1(s) = �i sin

✓
s�k

2

◆
, (14)

that satisfy (5) with appropriate Lanczos coe�cients. As
a result, we get the contribution to our complexity from
a single momentum mode

Ck(s = 1) = sin2
�k

2
=

1

2
�

t2 sin(k)

2
p
t
2
1 + t

2
2 � 2t1t2 cos(k)

.

(15)
The complexity of the ground state is obtained by inte-
grating over all the momenta and multiplying by 2 from
k < 0. This yields

C(t1, t2) = 2

Z
⇡

0

dk

2⇡
Ck =

1

2
�

t1 + t2 � |t1 � t2|

2⇡t1
. (16)

Observe that we took the continuum limit so this result is
proportional to the volume L but, to keep our equations
compact, we rescaled this factor (our C are complexity
“densities”).
This surprisingly simple formula, shown on Fig. 1, in-

deed shows two very di↵erent behaviours of the spread
complexity for the two distinct phases of the model.
Namely, for the non-topological phase with t1 > t2, com-
plexity linearly depends on the ratio t2/t1 but in the
topological phase, with t2 > t1, it is constant. This is our
main result. We also performed analogous computation
for the 1d Kitaev-chain [41], and found that complexity
becomes constant when crossing from a non-topological
to a topological phase in specific cases [42] (see supple-
mentary material D). Note that unlike entanglement en-
tropy or Nielsen-type complexities that require numerics,
(16) is fully analytical.

COMPLEXITY DURING QUANTUM QUENCH

Another framework where we can probe the spread
complexity is given by the so-called quantum quenches.
A typical quench protocol considers a unitary time evolu-
tion of an initial state |⌦ii of some initial HamiltonianHi,
performed with a di↵erent HamiltonianHf for which |⌦ii

is an excited state. Universal features of the evolution of
entanglement and complexity have been extensively stud-
ied in the literature (see e.g. [43–46] and review of closely
related dynamical quantum phase transitions [47]).
Here, we focus on the so-called instantaneous quench

in the SSH model and consider the state

| (t)i = e
�iHf t|⌦ii, (17)
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