BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//CERN//INDICO//EN
BEGIN:VEVENT
SUMMARY:Steady oscillations in kinetic model of aggregation process with c
ollisional fragmentation
DTSTART;VALUE=DATE-TIME:20201203T171900Z
DTEND;VALUE=DATE-TIME:20201203T172000Z
DTSTAMP;VALUE=DATE-TIME:20220809T231447Z
UID:indico-contribution-372@zakopane.if.uj.edu.pl
DESCRIPTION:Speakers: Sergey Matveev (Skolkovo Institute of Science and Te
chnology)\nIn this work\, we study a kinetic model of aggregation process
with collisional fragmentation with use of two efficient implementations o
f numerical methods: direct simulation Monte Carlo and finite-difference s
cheme exploiting the low-rank matrix representations of the utilized kinet
ic coefficients. We concentrate our efforts on the analysis of the solutio
ns for a particular class of non-local aggregation kernels \n$$\nK_{i\,j}
= i^a j^{-a} + i^{-a} j^{a}\,\n$$\nwith multiplicative expression for the
fragmentation rates $F_{i\,j} = \\lambda K_{i\,j}$ with $0 < \\lambda \\ll
1$. For $a > 0.5$ and $\\lambda < \\lambda_{c}$ never-ending collective o
scillations of the aggregates' concentrations take place[1].\n\nThe main c
ontribution of this work is cross-validation of our previous observations
with the utilization of the well-known stochastic acceptance-rejection met
hod [2] and its modification to an accounting of the fragmentation events.
\n\n[1] Brilliantov N. V.\, Otieno W.\, Matveev S. A.\, Smirnov A. P.\, Ty
rtyshnikov E. E.\, Krapivsky P. L. (2018) // Steady oscillations in aggreg
ation-fragmentation processes. Physical Review E\, 98(1)\, 012109.\n[2] Ga
rcia A. L.\, Van Den Broeck C.\, Aertsens M.\, Serneels R. (1987) // A Mon
te Carlo simulation of coagulation. Physica A: Statistical Mechanics and i
ts Applications\, 143(3)\, 535-546.\n\nhttps://zakopane.if.uj.edu.pl/event
/16/contributions/372/
LOCATION:
URL:https://zakopane.if.uj.edu.pl/event/16/contributions/372/
END:VEVENT
END:VCALENDAR